Skip to main content
Log in

Preparation and Microwave Absorption Properties of FeCoV/GO/Coupling Agent Composites in S Band

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

FeCoV alloy/graphene oxide (GO)/coupling agent composites were prepared by the ball-milling method. The microstructure and phase of the composites were detected by scanning electron microscope and x-ray diffraction. The electromagnetic parameters were characterized by the Agilent vector network analyzer in the frequency range of 1–18 GHz. The value of the minimum reflection loss (RLmin) for the FeCoV alloy/GO/coupling agent composites can reach − 17.1 dB at 2.8 GHz with a thickness of 2 mm, accompanied by a bandwidth (<− 10 dB) of 0.8 GHz. The impedance matching properties of the composites were greatly improved by the addition of the coupling agent. The superior absorption properties for the FeCoV/GO/coupling agent composites can be used widely as microwave absorption materials in the S band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. P. Liu, T. Gao, W. He, and P. Liu, Electrospinning of hierarchical carbon fibers with multi-dimensional magnetic configurations toward prominent microwave absorption. Carbon 202, 244 (2023). https://doi.org/10.1016/j.carbon.2022.10.089.

    Article  CAS  Google Scholar 

  2. H. Wu, G. Xie, Y. Zhu, N. Xie, and J. Chen, Improving impedance matching of flaky carbonyl iron based on the surface modification by binary coupling agents. J. Mater. Sci. Mater. Electron. 32, 12 (2021).

    Article  Google Scholar 

  3. L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang, H.B. Zhang, X. Zhou, C. Liu, C. Shen, and X. Xie, Multifunctional magnetic Ti 3 C 2 T x MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 4 (2021).

    Article  Google Scholar 

  4. X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, and T. Li, Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 72, 93 (2021).

    Article  CAS  Google Scholar 

  5. B. Chen, D. Chen, Z. Kang, and Y. Zhang, Preparation and microwave absorption properties of Ni–Co nanoferrites. J. Alloys Compd. 618, 222 (2015).

    Article  CAS  Google Scholar 

  6. Z. Yan, J. Cai, Y. Xu, and D. Zhang, Microwave absorption property of the diatomite coated by Fe-CoNiP films. Appl. Surf. Sci. 346, 77 (2015).

    Article  CAS  Google Scholar 

  7. Y. Zhou, W. Zhou, R. Li, Y. Mu, and Y. Qing, Enhanced antioxidation and electromagnetic properties of Co-coated flaky carbonyl iron particles prepared by electroless plating. J. Alloys Compd. 637, 10 (2015).

    Article  CAS  Google Scholar 

  8. Y. Zhai, D. Zhu, W. Zhou, D. Min, and F. Luo, Enhanced impedance matching and microwave absorption properties of the MAMs by using ball-milled flaky carbonyl iron-BaFe12O19 as compound absorbent. J. Magn. Magn. Mater. 467, 82 (2018).

    Article  CAS  Google Scholar 

  9. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4, 41 (2016).

    Article  Google Scholar 

  10. B. Wang, Q. Wu, Y. Fu, and T. Liu, A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 86, 91 (2021).

    Article  CAS  Google Scholar 

  11. C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, and Z. Guo, Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696 (2018).

    Article  CAS  Google Scholar 

  12. W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, and M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C. 3, 38 (2015).

    Article  Google Scholar 

  13. M. Lv, B. Zhou, Y. Liu, B. Ya, H. Jia, and X. Zhang, Study on electromagnetic wave absorbing properties of nanocrystalline Fe81.5Si3B9P3C1Cu1Ti1.5/Graphene oxide composite. J. Magn. Magn. Mater. 575, 170704 (2023).

    Article  CAS  Google Scholar 

  14. X. Chen, Y. Wu, W. Gu, M. Zhou, S. Tang, J. Cao, Z. Zou, and G. Ji, Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 189, 617 (2022).

    Article  CAS  Google Scholar 

  15. H. Xiaoyu, X. Guozhi, X. Ningyan, and J. Chen, Fabrication and microwave absorption properties of the flaky carbonyl iron/graphene oxide composite in S band. J. Mater. Sci. Mater. Electron. 34, 2 (2023).

    Article  Google Scholar 

  16. S. Gao, S.H. Yang, H.Y. Wang, G.S. Wang, and P.G. Yin, Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 162, 438 (2020).

    Article  CAS  Google Scholar 

  17. S. Das, G. Chandra Nayak, S.K. Sahu, and R. Oraon, Development of FeCoB/Graphene Oxide based microwave absorbing materials for X-Band region. J. Magn. Magn. Mater. 384, 224 (2015).

    Article  CAS  Google Scholar 

  18. J. Feng, F. Pu, Z. Li, X. Li, X. Hu, and J. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214 (2016).

    Article  CAS  Google Scholar 

  19. H. Wang, D. Zhu, W. Zhou, and F. Luo, Microwave electromagnetic properties of polyimide/carbonyl iron composites. J. Polym. Res. 21, 6 (2014).

    Article  Google Scholar 

  20. X. Guozhi, W. Ping, Y. Liukui, Z. Baoshan, L. Pinghua, and L. Huaixian, The effect of coupling agent on the microwave properties of the melt-spun iron/earth nanocomposites. J. Appl. Polym. Sci. 114, 4 (2009).

    Article  Google Scholar 

  21. S. Mallakpour and V. Behranvand, Surface treatment of nano ZnO using 3,4,5,6-tetrabromo-N-(4-hydroxy-phenyl)-phthalamic acid as novel coupling agent for the preparation of poly(amide–imide)/ZnO nanocomposites. Colloid Polym. Sci. 292, 9 (2014).

    Article  Google Scholar 

  22. W. Zheng, Z. Yao, X. Zhang, and J. Zhou, Fabrication and properties of structural microwave absorption composites based on VARI process. J. Mater. Sci. Mater. Electron. 33, 8 (2022).

    Article  Google Scholar 

  23. L. Ye, G. Xie, N. Xie, H. Wang, J. Chen, and J. Chen, Enhanced microwave absorption properties of absorbing materials induced by complex coupling agents. IEEE Trans. Magn. 55, 2 (2019).

    Article  Google Scholar 

  24. Z. Cui, G. Ma, M. Wang, C. Luo, Z. Chen, H. Ma, Q. Li, and W. Li, Enhanced microwave absorption for high filler content composite molded from polymer coated flaky carbonyl irons modified by silane coupling agents. J. Wuhan Univ. Technol. Mater Sci. Ed. 38, 1 (2023).

    Article  Google Scholar 

  25. J. Pourahmadazar and V. Rafii, Broadband circularly polarised slot antenna array for L- and S band applications. Electron. Lett. 48, 10 (2012).

    Article  Google Scholar 

  26. N. Shao, J. Li, S. Che, J. Zheng, L. Qiao, Y. Ying, J. Yu, and W. Li, L and S band microwave absorption properties of Z-type hexaferrite Ba3Co2Fe24O41 synthesized at low temperature. J. Alloys Compd. 968, 171926 (2023).

    Article  CAS  Google Scholar 

  27. C. Zeng, Z. Jia, and W. Zhou, Effect of yttrium on the wave absorption properties of Fe95Si1B2P0.5Cu1.5 alloy powders in the S band and C band. J. Magn. Magn. Mater. 538, 168250 (2021).

    Article  CAS  Google Scholar 

  28. Y. Zhu, G. Xie, H. Wu, N. Xie, X. Huang, and J. Chen, Electromagnetic and microwave absorption properties of tunable carbonyl iron absorbing materials prepared by self-composite treatment in 2–8 GHz band. J. Mater. Sci. Mater. Electron. 33, 20 (2022).

    Article  Google Scholar 

  29. B. Zhang, Y. Feng, J. Xiong, Yi. Yang, and Lu. Huaixian, Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2–18 GHz. IEEE Trans. Magn. 42, 7 (2006).

    Google Scholar 

  30. R.B. Yang and W.F. Liang, Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 109, 7 (2011).

    Google Scholar 

  31. Z. Zhang, J. Wei, W. Yang, L. Qiao, T. Wang, and F. Li, Effect of shape of Sendust particles on their electromagnetic properties within 0.1–18GHz range. Phys. B Condens. Matter. 406, 20 (2011).

    Article  Google Scholar 

  32. K. Liang, X.J. Qiao, Z.G. Sun, X.D. Guo, L. Wei, and Y. Qu, Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123, 6 (2017).

    Article  Google Scholar 

  33. K.N. Gusak, N.G. Kozlov, R.D. Sauts, and V.A. Serzhanina, Reaction of benzylidene-2-naphthylamine with the ethyl ester of 3-pyridyl-?-oxopropionic acid. Chem. Heterocycl. Compd. 32, 6 (1996).

    Article  Google Scholar 

  34. X. Tang, B.Y. Zhao, Q. Tian, and K.A. Hu, Synthesis, characterization and microwave absorption properties of titania-coated barium ferrite composites. J. Phys. Chem. Solids 67, 12 (2006).

    Article  Google Scholar 

  35. L.J. Deng, P.H. Zhou, J.L. Xie, and L. Zhang, Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 10 (2007).

    Article  Google Scholar 

  36. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. J. Magn. Magn. Mater. 281, 2–3 (2004).

    Article  Google Scholar 

  37. J. Ding, P.G. McCormick, and R. Street, Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride. J. Magn. Magn. Mater. 124, 1–2 (1993).

    Article  Google Scholar 

  38. K. Huang, W. Liao, J. Yu, P. Li, and J. Xu, Microwave absorption performance of sandwich-like Ti3C2Tx@BFO composite material in C and X bands. J. Magn. Magn. Mater. 584, 171047 (2023).

    Article  CAS  Google Scholar 

  39. X. Deng, S. Gao, X. Qi, H. Dai, S. Fu, Q. Ni, and Y. Fu, Scalable 3D textile with hierarchically functionalized pyramidal units using nanostructured polyamide@carbon/Fe3O4 fibers for tunable microwave absorption. Chem. Eng. J. 473, 145040 (2023).

    Article  CAS  Google Scholar 

  40. T. Yu, J. Qiu, J. Liao, X. Wang, W. Chen, Y. Cheng, W. Wang, and Y.F. Song, Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber. J. Alloys Compd. 867, 159046 (2021).

    Article  CAS  Google Scholar 

  41. Y.L. Wang, G.S. Wang, X.J. Zhang, and C. Gao, Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading. J. Mater. Sci. Technol. 103, 34 (2022).

    Article  CAS  Google Scholar 

  42. Z. Jiao, J. Hu, M. Ma, Y. Liu, J. Zhao, X. Wang, S. Luan, and L. Zhang, One-dimensional core–shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. J. Colloid Interface Sci. 650, 2014 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. B. Quan, X. Liang, G. Xu, Y. Cheng, Y. Zhang, W. Liu, G. Ji, and Y. Du, A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation. New J. Chem. 41, 3 (2017).

    Article  Google Scholar 

  44. H. Zhao, Y. Cheng, Y. Zhang, Z. Zhang, L. Zhou, and B. Zhang, Core–shell hybrid nanowires with Co nanoparticles wrapped in N-doped porous carbon for lightweight microwave absorption. Dalton Trans. 48, 40 (2019).

    Article  CAS  Google Scholar 

  45. D. Xu, S. Yang, P. Chen, Q. Yu, X. Xiong, and J. Wang, Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146, 301 (2019).

    Article  CAS  Google Scholar 

  46. S.Y. Zhang, Q.X. Cao, Y.R. Xue, and Y.X. Zhou, Microwave absorption performance of the absorber based on epsilon-Fe3N/epoxy and carbonyl iron/epoxy composites. J. Magn. Magn. Mater. 374, 755 (2015).

    Article  CAS  Google Scholar 

  47. G. Sun, B. Dong, M. Cao, B. Wei, and C. Hu, Hierarchical dendrite-like magnetic materials of Fe 3 O 4, γ-Fe 2 O 3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 6 (2011).

    Article  Google Scholar 

  48. H.B. Zhao, J.B. Cheng, J.Y. Zhu, and Y.Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness. J. Mater. Chem. C. 7, 2 (2019).

    Google Scholar 

  49. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, and N. Mahmood, Facile synthesis of Fe 3 O 4 /GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 9 (2016).

    Article  Google Scholar 

  50. D. Ding, Y. Wang, X. Li, R. Qiang, P. Xu, W. Chu, X. Han, and Y. Du, Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 111, 722 (2017).

    Article  CAS  Google Scholar 

  51. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, and M.S. Cao, Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6, 10 (2014).

    Google Scholar 

  52. S. He, G.S. Wang, C. Lu, J. Liu, B. Wen, H. Liu, L. Guo, and M.S. Cao, Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). J. Mater. Chem. A. 1, 15 (2013).

    Article  Google Scholar 

  53. L. Huang, X. Liu, and R. Yu, Enhanced microwave absorption properties of rod-shaped Fe2O3/Fe3O4/MWCNTs composites. Prog. Nat. Sci. Mater. Int. 28, 3 (2018).

    Article  Google Scholar 

  54. X. Qi, Y. Deng, W. Zhong, Y. Yang, C. Qin, C. Au, and Y. Du, Controllable and large-scale synthesis of carbon nanofibers, bamboo-like nanotubes, and chains of nanospheres over Fe/SnO2 and their microwave-absorption properties. J. Phys. Chem. C 114, 2 (2010).

    Article  Google Scholar 

  55. Y. Qin, R. Che, C. Liang, J. Zhang, and Z. Wen, Synthesis of Au and Au–CuO cubic microcages via an in situ sacrificial template approach. J. Mater. Chem. 21, 11 (2011).

    Article  Google Scholar 

  56. S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10 (2005).

    Article  Google Scholar 

  57. X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, and Y. Du, Excellent microwave absorption property of Graphene-coated Fe nanocomposites. Sci. Rep. 3, 1 (2013).

    Article  Google Scholar 

  58. J. Yan, Y. Huang, S. Zhou, X. Han, and P. Liu, Preparation and microwave absorption properties of Nanomesh Poly (3,4-ethylenedioxythiophene) covalently functionalized graphene oxide. J. Mater. Sci. Mater. Electron. 30, 5 (2019).

    Article  Google Scholar 

  59. R. Shu, Y. Wu, W. Li, J. Zhang, Y. Liu, J. Shi, and M. Zheng, Fabrication of ferroferric oxide–carbon/reduced graphene oxide nanocomposites derived from Fe-based metal–organic frameworks for microwave absorption. Compos. Sci. Technol. 196, 108240 (2020).

    Article  CAS  Google Scholar 

  60. B. Huang, J. Yue, Y. Wei, X. Huang, X. Tang, and Z. Du, Enhanced microwave absorption properties of carbon nanofibers functionalized by FeCo coatings. Appl. Surf. Sci. 483, 98 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11974188).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NZ, XC and GX. The first draft of the manuscript was written by NZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guozhi Xie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Xie, G. & Chen, X. Preparation and Microwave Absorption Properties of FeCoV/GO/Coupling Agent Composites in S Band. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11124-7

Keywords

Navigation