Skip to main content
Log in

Photoelectrochemical Water Splitting by Using Nanomaterials: A Review

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One of the best methods for generating hydrogen in a straightforward, low-cost, and environmentally friendly manner is photoelectrochemical (PEC) water splitting using nanoparticles. The total efficacy of solar to hydrogen energy transfer may be improved by tuning a photocatalyst with a material of an appropriate frequency. By controlling their size and structure, the capacity of nanomaterials can be limited. Recent research has focused on the role of nanostructured materials in water splitting, specifically their structural and crystalline characteristics. When using PEC cells to split water, the most significant concern is in charge separation and transport. The high surface-to-volume ratio of nanomaterials facilitates charge separation, and the recombination of electron–hole pairs is thus minimized. This article summarizes current research on PEC-based nanoparticles for use in water-splitting techniques and other methods for advancing hydrogen development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Bu and J. Ping, A review on photoelectrochemical cathodic protection semiconductor thin films for metals. GEE 4, 331 (2017).

    Google Scholar 

  2. K. Maeda and L. Domen, Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 18, 2655 (2010).

    Article  Google Scholar 

  3. A. Cecal, A. Paraschivescu, K. Popa, D. Colisnic, G. Timco, and L. Singerean, Radiolytic splitting of water molecules in the presence of some supramolecular compounds. J. Serbian Chem. Soc. 68, 593 (2003).

    Article  CAS  Google Scholar 

  4. I. Akkerman, M. Janssen, J. Rocha, and R.H. Wijffels, Photobiological hydrogen production. Int J. Hydrogen. Energy 27, 1195 (2002).

    Article  CAS  Google Scholar 

  5. J. Lede, F. Lapicque, and J. Villermaux, Production of hydrogen by direct thermal decomposition of water. Int. J. Hydrogen. Energy 8, 675 (1983).

    Article  CAS  Google Scholar 

  6. S. Ikeda, T. Itani, K. Nango, and M. Matsumura, Overall water splitting on tungsten-based photocatalysts with defect pyrochlore structure. Catal. Lett. 98, 229 (2004).

    Article  CAS  Google Scholar 

  7. I. Ullah, A. Munir, A. Haider, N. Ullah, and I. Hussain, Supported polyoxometalates as emerging nanohybrid materials for photochemical and photoelectrochemical water splitting. Nanophotonics. 10, 1595 (2021).

    Article  CAS  Google Scholar 

  8. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  9. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, and J.Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Nano Micro Small 5, 104 (2009).

    CAS  Google Scholar 

  10. P. Szymanskiand and M. El-Sayed, Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review. Marco Antonio Chaer Nascimento. 45, 7 (2014).

    Article  Google Scholar 

  11. T. Wilke, D. Schricker, J. Rolf, and K. Kleinermanns, Solar water splitting by semiconductor nanocomposites and hydrogen storage with quinoid systems. Open J. Phys. Chem. 2, 195 (2012).

    Article  Google Scholar 

  12. S. Biswas, (1999). Optimization of nanowire photodiode devices for neuronal cell survival. Lund University

  13. S.S. Kalanur, L.T. Duy, and H. Seo, Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes. Top. Catal. 61, 1043 (2018).

    Article  CAS  Google Scholar 

  14. L. Li, C. Liu, Y. Qui, N. Mitsuzak, and Z. Chen, Convex-nanorods of α-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation. Int. J. Hydrogen. Energy 42, 19654 (2017).

    Article  CAS  Google Scholar 

  15. J. Li, J. Zhou, H. Hao, and W. Li, Controlled synthesis of Fe2O3 modified Ag-010BiVO4 heterostructures with enhanced photoelectrochemical activity toward the dye degradation. Appl Surf. Sci. 399, 1 (2017).

    Article  CAS  Google Scholar 

  16. G. Dong, B. Du, L. Liu, W. Zhang, Y. Liang, H. Shi, and W. Wang, Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light. Appl. Surf. Sci. 399, 86 (2017).

    Article  CAS  Google Scholar 

  17. K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486 (2013).

    Article  CAS  Google Scholar 

  18. W.K. Jo and T.S. Natarajan, Facile synthesis of novel redox-mediator-free direct Z-scheme CaIn2S4 marigold-flower-like/TiO2 photocatalysts with superior photocatalytic efficiency. ACS Appl. Mater. Interfaces. 31, 17138 (2015).

    Article  Google Scholar 

  19. N. Liu, S.P. Albu, K. Lee, S. So, and P. Schmuki, Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim Acta. 82, 98 (2012).

    Article  CAS  Google Scholar 

  20. H. Liu, G. She, L. Mu, and W. Shi, Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. Mater. Res. Bull. 47, 917 (2012).

    Article  CAS  Google Scholar 

  21. B.D. Chernomordik, H.B. Russell, U. Cvelbar, J.B. Jasinski, and V. Kumar, Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23, 194009 (2012).

    Article  Google Scholar 

  22. P. Deshmukh, Y. Sohn, and W.G. Shin, Chemical synthesis of ZnO nanorods: investigations of electrochemical performance and photo-electrochemical water splitting applications. J. Alloys Compd. 711, 573 (2017).

    Article  CAS  Google Scholar 

  23. Q. Nie, L. Yang, C. Cao, Y. Zeng, G. Wang, C. Wang, and S. Lin, Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chem. Eng. J. 325, 151 (2017).

    Article  CAS  Google Scholar 

  24. Y. Hu, X. Yan, Y. Gu, X. Chen, Z. Bai, Z. Kang, F. Long, and Y. Zhang, Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 339, 122 (2015).

    Article  CAS  Google Scholar 

  25. S. Sharma, S. Singh, and N. Khare, Enhanced photosensitization of zinc oxide nanorods using polyaniline for efficient photocatalytic and photoelectrochemical water splitting. Int. J. Hydrogen. Energy 41, 21088 (2016).

    Article  CAS  Google Scholar 

  26. Y. Liu, Z. Kong, H. Si, P. Li, S. Cao, S. Liu, Y. Li, S. Zhang, Z. Zhang, Q. Liao, L. Wang, and Y. Zhang, Cactus-like hierarchical nanorod-nanosheet mixed dimensional photoanode for efficient and stable water splitting. Nano Energy 35, 189 (2017).

    Article  Google Scholar 

  27. Y.O. Kim, K.S. Ahn, and S.H. Kang, Tungsten trioxide nanorods on flexible carbon cloth for photoelectrochemical water splitting. Mater. Lett. 151, 28 (2015).

    Article  CAS  Google Scholar 

  28. S. Sahai, A. Ikram, S. Rai, R. Shirvastive, S. Dass, and V.R. Satsangi, Quantum dots sensitization for photoelectrochemical generation of hydrogen: a review. Renew. Sustain. Energy Rev. 68, 19 (2017).

    Article  CAS  Google Scholar 

  29. S. Banerjee, S.K. Mohapatra, and M. Misra, Synthesis of TaON nanotube arrays by sonoelectrochemical anodization followed by nitridation: a novel catalyst for photoelectrochemical hydrogen generation from water. Chem. Commun. 46, 7137 (2009).

    Article  Google Scholar 

  30. F.X. Xiao, S.F. Hung, J. Miao, H.Y. Wang, H. Yang, and B. Liu, Metal-cluster-decorated TiO2 Nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. Nano Micro Small 11, 554 (2015).

    CAS  Google Scholar 

  31. A.J. Cowan, W. Leng, P.R.F. Parnes, D.R. Klug, and J.R. Durrant, Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Phys. Chem. Chem. Phys. 15, 8772 (2013).

    Article  CAS  Google Scholar 

  32. K. Kollbek, M. Sikora, C. Kapusta, A.T. Zajac, M. Radecka, and K. Zakrzewska, Study of N-doped TiO2 thin films for photoelectrochemical hydrogen generation from water. Open Chem. 13, 857 (2015).

    Article  CAS  Google Scholar 

  33. S. Rai, A. Ikram, S. Sahai, S. Dass, R. Shrivastav, and V.R. Satsangi, CNT based photoelectrodes for PEC generation of hydrogen: a review. Int. J. Hydrogen Energy 42, 3994 (2017).

    Article  CAS  Google Scholar 

  34. D.-Z. Guo, G.M. Zhang, Z.-X. Zhang, Z.-Q. Xue, and Z.-N. Gu, Visible-light-induced water-splitting in channels of carbon nanotubes. J. Phys. Chem. 110(1571), 1575 (2006).

    Google Scholar 

  35. C.W. Huang, C.-H. Liao, J.C.S. Wu, Y.-C. Liu, C.-L. Chang, C.-H. Wu, M. Anpu, M. Matsuoka, and M. Takeuchi, Hydrogen generation from photocatalytic water splitting over TiO2 thin film prepared by electron beam-induced deposition. Int. J. Hydrogen Energy 35, 12005 (2010).

    Article  CAS  Google Scholar 

  36. F.L. de Souza, A.M. Xavier, W.M. de Carvalho, R.H. Goncalves, and E.R. Leite, Facile routes to produce hematite film for hydrogen generation from photoelectro-chemical water splitting. NanoEnergy 22, 81 (2013).

    Article  Google Scholar 

  37. S. Wu, H. Huang, M. Shang, C. Du, Y. Wu, and W. Song, High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. Biosens. Electron. 92, 646 (2017).

    CAS  Google Scholar 

  38. Z. Yin, B. Chen, M. Bosman, X. Cao, J. Chen, B. Zheng, and H. Zhang, Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Nano Micro Small 10, 3537 (2014).

    CAS  Google Scholar 

  39. X. Gan, H. Zhao, and X QUan, Two-dimensional MoS2: a promising building block for biosensors. Biosens Bioelectron. 89, 56 (2017).

    Article  CAS  Google Scholar 

  40. H. Miao, G. Zhang, X. Hu, J. Mu, T. Han, J. Fan, C. Zhu, L. Song, J. Bai, and X. Hou, A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties. J. Alloys Compd. 690, 669 (2017).

    Article  CAS  Google Scholar 

  41. S. Cho, J.-W. Jang, K.-H. Lee, and J.S. Lee, Research update: strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Mater. 2, 010703 (2014).

    Article  Google Scholar 

  42. Z. Liu, J. Wu, and J. Zhang, Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int. J. Hydrogen Energy 41, 20529 (2016).

    Article  CAS  Google Scholar 

  43. C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, and Z. Kang, Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl. Catal. B 216, 114 (2017).

    Article  CAS  Google Scholar 

  44. L. Sang, J. Lin, and Y. Zhao, Preparation of carbon dots/TiO2 electrodes and their photoelectrochemical activities for water splitting. Int. J. Hydrogen Energy 42, 12122 (2017).

    Article  CAS  Google Scholar 

  45. C.-J. Lin, L.-C. Kao, Y. Huang, M.A. Banares, and S.Y.-H. Liou, Uniform deposition of coupled CdS and CdSe quantum dots on ZnO nanorod arrays as electrodes for photoelectrochemical solar water splitting. Int. J. Hydrogen Energy 40, 1388 (2015).

    Article  CAS  Google Scholar 

  46. S.H. Kang, S.-Y. Lee, M.G. Gang, K.-S. Ahn, and J.H. Kim, Bifunctional effects of CdSe quantum dots and Nb2O5 interlayer for ZnO nanorods-based photoelectrochemical water-splitting cells. Electrochim. Acta 133, 262 (2014).

    Article  CAS  Google Scholar 

  47. R. Azimirad, S. Safa, M. Ebrahimi, S. Yousefzadeh, and A.Z. Moshfegh, Photoelectrochemical activity of graphene quantum dots/hierarchical porous TiO2 photoanode. J. Alloys Compd. 721, 36 (2017).

    Article  CAS  Google Scholar 

  48. T. Majumder and S.P. Mondal, Graphene quantum dots as a green photosensitizer with carbon-doped ZnO nanorods for quantum-dot-sensitized solar cell applications. Bull. Mater. Sci. 42, 15 (2019).

    Article  Google Scholar 

  49. H. Zhang, W. Tian, L. Zhou, H. Sun, M. Tade, and S. Wang, Monodisperse Co3O4 quantum dots on porous carbon nitride nanosheets for enhanced visible-light-driven water oxidation. Appl. Catal. B. 223, 2 (2018).

    Article  CAS  Google Scholar 

  50. J. Su, L. Zhu, and G. Chen, Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity. Appl. Catal. 186, 127 (2016).

    Article  CAS  Google Scholar 

  51. F.A. Al-Agel, J. Suleiman, and S.A. Khan, Studies of silicon quantum dots prepared at different substrate temperatures. Superlattices Microstruct. 103, 325 (2017).

    Article  CAS  Google Scholar 

  52. S. Pokrant, S. Dilger, S. Landsmann, and M. Trottmann, Size effects of cocatalysts in photoelectrochemical and photocatalytic water splitting. Mater. Energy Today. 5, 158 (2017).

    Article  Google Scholar 

  53. P. Varadhan, H.-C. Fu, D. Priante, J.R.D. Retamal, C. Zhao, M. Ebaid, T.K. Ng, I. Ajia, S. Mitra, I.S. Roqan, B.S. Ooi, and J.-H. He, Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 17, 1520 (2017).

    Article  CAS  Google Scholar 

  54. M.M. Momeni and Y. Ghayeb, Visible light-driven photoelectrochemical water splitting on ZnO-TiO2 heterogeneous nanotube photoanodes. J. Appl. Electrochem. 45, 557 (2015).

    Article  CAS  Google Scholar 

  55. M. Fekete, W. Riedel, A.F. Patti, and L. Spiccia, Photoelectrochemical water oxidation by screen printed ZnO nanoparticle films: effect of pH on catalytic activity and stability. Nanoscale 6, 7585 (2014).

    Article  CAS  Google Scholar 

  56. A.K. Vishwakarma, P. Tripathi, A. Srivastava, A.S.K. Sinha, and O.N. Srivastava, Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route. Int. J. Hydrogen Energy 42, 22677 (2017).

    Article  CAS  Google Scholar 

  57. W.-J. Yin, H. Tang, S.-H. Wei, M.M. Al-Jassim, J. Turner, and Y. Yan, Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2. Phys. Rev. B. 82, 045106 (2010).

    Article  Google Scholar 

  58. H. Yan, X Wang, and X Yao, Band structure design of semiconductors for enhanced photocatalytic activity: the case of TiO2. Prog. Nat. Sci. 23, 402 (2013).

    Article  CAS  Google Scholar 

  59. J. Wang, H. Sun, J. Huang, Q. Li, and Q. Yang, Yang band structure tuning of TiO2 for enhanced photoelectrochemical water splitting. J. Phys. Chem. C 118, 7451 (2014).

    Article  CAS  Google Scholar 

  60. C. Wang, Z. Chen, H. Jin, C. Cao, J. Li, and Z. Mi, Enhancing visible-light photoelectrochemical water splitting through transition-metal doped TiO2 nanorod arrays. J. Mater. Chem. A. 2, 17820 (2014).

    Article  CAS  Google Scholar 

  61. N.M. Gupta, Factors affecting the efficiency of a water splitting photocatalyst: a perspective. Renew. Sustain. Energy Rev. 71, 585 (2017).

    Article  CAS  Google Scholar 

  62. J. Wang, H.-X. Zhong, F.-L. Meng, and X.-B. Zhong, Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano 2, 2342 (2016).

    Article  Google Scholar 

  63. H. Li, Y. Tan, P. Liu, C. Guo, M. Luo, J. Han, T. Lin, F. Huang, and M. Chen, Atomic-sized pores enhanced electrocatalysis of TaS2 nanosheets for hydrogen evolution. Adv. Mater. 40, 8945 (2016).

    Article  Google Scholar 

  64. J. Wang, J. Liu, H. Yang, Z. Chen, J. Lin, and Z.X. Shen, Active sites-enriched hierarchical MoS2 nanotubes: highly active and stable architecture for boosting hydrogen evolution and lithium storage. J. Mater. Chem. A 20, 7565 (2016).

    Article  Google Scholar 

  65. G. Ye, Y. Gong, J. Lin, B. Li, Y. He, S.T. Pantelides, W. Zhou, R. Vajtai, and P.M. Ajayan, Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2, 1097 (2016).

    Article  Google Scholar 

  66. C. Tsai, F. Abild-Pedersen, and J.K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 3, 1381 (2014).

    Article  Google Scholar 

  67. D. Vikraman, K. Akbar, S. Hussain, G. Yoo, J.-Y. Jang, S.-H. Chun, J. Jung, and H.J. Park, Direct synthesis of thickness-tunable MoS2 quantum dot thin layers: optical, structural and electrical properties and their application to hydrogen evolution. Nano Energy 35, 101 (2017).

    Article  CAS  Google Scholar 

  68. K. Qu, Y. Zheng, X. Zhang, K. Davey, S. Dai, and S.Z. Qiao, Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 11, 7293 (2017).

    Article  CAS  Google Scholar 

  69. E. Pastor, F. Le Formal, M.T. Mayer, S. David Tilley, L. Francàs, C.A. Mesa, M. Grätzel, and J.R. Durrant, Spectroelectrochemical analysis of the mechanism of (photo) electrochemical hydrogen evolution at a catalytic interface. Nat. Commun. 1, 14280 (2017).

    Article  Google Scholar 

  70. J. Zhang, Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull. 1, 48 (2011).

    Article  Google Scholar 

  71. Y.Z. Zhang, Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical Energy Angew. Chem. 39, 10350 (2014).

    Article  Google Scholar 

  72. M. Sathish, B. Viswanathan, and R.P. Viswanath, Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Int. J. Hydrogen 7, 891 (2006).

    Article  Google Scholar 

  73. W.J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, and S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 12, 7159 (2016).

    Article  Google Scholar 

  74. A. Fujisima and K. Honda, Photolysis-decomposition of water at surface of an irradiated semiconduction. Nature 42, 37 (1972).

    Google Scholar 

  75. Y.A. Shaban and S.U.M. Khan, Visible light active carbon modified n-TiO2 for efficient hydrogen production by photoelectrochemical splitting of water. Int. J. Hydrogen 4, 1118 (2008).

    Article  Google Scholar 

  76. M. Frites and S.U.M. Khan, Visible light active hydrogen modified (HM)-n-TiO2 thin films for photoelectrochemical splitting of water. Electrochem. Commun. 11, 2257 (2009).

    Article  CAS  Google Scholar 

  77. M. Niu, D. Cheng, and D. Cao, Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S-O coupling for water splitting. Int. J. Hydrogen 3, 1251 (2013).

    Article  Google Scholar 

  78. Y. Gai, J. Li, S.S. Li, J.B. Xia, and S.H. Wei, Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102(3), 036402 (2009).

    Article  Google Scholar 

  79. H.-Z. Chen, Y.-Y. Zhang, X. Gong, and H. Xiang, Predicting new TiO2 phases with low band gaps by a multiobjective global optimization approach. J. Phys. Chem. C. 5, 2333 (2014).

    Article  Google Scholar 

  80. Y. Liu, W. Zhou, Y. Liang, W. Cui, and P. Wu, Tailoring band structure of TiO2 to enhance photoelectrochemical activity by codoping S and Mg. J. Phys. Chem. 21, 11557 (2015).

    Google Scholar 

  81. J. Wang, Q. Meng, J. Huang, Q. Li, and J. Yang, Band structure engineering of anatase TiO2 by metal-assisted PO coupling. J. Chem. Phys. 17, 174705 (2014).

    Article  Google Scholar 

  82. N. Naseri, P. Sangpour, and A. Moshfegh, Visible light active Au: TiO2 nanocomposite photoanodes for water splitting: sol–gel versus sputtering. Electrochim. Acta 3, 1150 (2011).

    Article  Google Scholar 

  83. V.J. Babu, M.K. Kumar, A.S. Nair, T.L. Kheng, S.I. Allakhverdiev, and S. Ramakrishna, Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int. J. Hydrogen Energy 10, 8897 (2012).

    Article  Google Scholar 

  84. J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, and K.-S. Choi, Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 16, 5266 (2008).

    Article  Google Scholar 

  85. X.-F. Gao, W.-T. Sun, H. Zhu-Dong, G. Ai, Y.-L. Zhang, S. Feng, F. Li, and L.-M. Peng, An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C. 47, 20481 (2009).

    Article  Google Scholar 

  86. Q.C. Xu, D.V. Wellia, Y.H. Ng, R. Amal, and T.T.Y. Tan, Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J. Phys. Chem. C 15, 7419 (2011).

    Article  Google Scholar 

  87. J. Zhang, J.H. Bang, C. Tang, and P.V. Kamat, Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 1, 387 (2010).

    Article  Google Scholar 

  88. Z. Zhang, X. Tan, T. Yu, L. Jia, and X. Huang, Time-dependent formation of oxygen vacancies in black TiO2 nanotube arrays and the effect on photoelectrocatalytic and photoelectrochemical properties. Int. J. Hydrogen 27, 11634 (2016).

    Article  Google Scholar 

  89. Y. Zhao, N. Hoivik, and K. Wang, Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano Energy 30, 728 (2016).

    Article  CAS  Google Scholar 

  90. Q.Y. Wang, J.S. Zhong, M. Zhang, D.Q. Chen, and Z.G. Li, In situ fabrication of TiO2 nanotube arrays sensitized by Ag nanoparticles for enhanced photoelectrochemical performance. Mater. Lett. 182, 163 (2016).

    Article  CAS  Google Scholar 

  91. M. Nischk, P. Mazierski, Z. Wei, K. Siuzdak, N.A. Kouame, E. Kowalska, H. Remita, and A.Z. Medynska, Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl. Surf. Sci. 387, 89 (2016).

    Article  CAS  Google Scholar 

  92. Z. Pan, Y. Qiu, J. Yang, M. Liu, L. Zhou, Y. Xu, L. Sheng, X. Zhao, and Y. Zhang, Synthesis of three-dimensional hyperbranched TiO2 nanowire arrays with significantly enhanced photoelectrochemical hydrogen production. J. Mater. Chem. A. 7, 4004 (2015).

    Article  Google Scholar 

  93. Y. Yu, X. Yin, A. Kvit, and X. Wang, Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 5, 2528 (2014).

    Article  Google Scholar 

  94. A Eftekhari, Nanostructured Materials in Electrochemistry. (2008).

  95. Z. Zhang and P. Wang, Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ. Sci. 4, 6506 (2012).

    Article  Google Scholar 

  96. R. Zhang, M. Shao, S. Xu, F. Ning, L. Zhou, and M. Wei, Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy 33, 21 (2017).

    Article  Google Scholar 

  97. F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D.G. Evans, and X. Duan, TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ. Sci. 8, 2633 (2016).

    Article  Google Scholar 

  98. F. Xu, J. Mei, M. Zheng, D. Bai, D. Wu, Z. Gao, and K. Jiang, Au nanoparticles modified branched TiO2 nanorod array arranged with ultrathin nanorods for enhanced photoelectrochemical water splitting. J. Alloys Compd. 693, 1124 (2017).

    Article  CAS  Google Scholar 

  99. H. Yang, J. Tian, Y. Bo, Y. Zhou, X. Wang, and H. Cui, Visible photocatalytic and photoelectrochemical activities of TiO2 nanobelts modified by In2O3 nanoparticles. J. Colloid Interface Sci. 487, 258 (2017).

    Article  CAS  Google Scholar 

  100. K. Trzciński, M. Szkoda, K. Siuzdak, M. Sawczak, and A.L. Oleksiak, Electrochemical and photoelectrochemical characterization of photoanodes based on titania nanotubes modified by a BiVO4 thin film and gold nanoparticles. Electrochim. Acta. 222, 421 (2016).

    Article  Google Scholar 

  101. R. Zhang and P. Somasundaran, Advances in adsorption of surfactants and their mixtures at solid/solution interfaces. Adv. Colloid Interface Sci. 123–126, 213 (2006).

    Article  Google Scholar 

  102. S. Hejazi, N.T. Nguyen, A. Mazare, and P. Schmuki, Aminated, TiO2 nanotubes as a photoelectrochemical water splitting photoanode. Catal. Today 281, 189 (2017).

    Article  CAS  Google Scholar 

  103. T. Zhang, Y. Liu, J. Liang, and D. Wang, Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl. Surf. Sci. 394, 440 (2017).

    Article  CAS  Google Scholar 

  104. A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim, and S. Huai, Wei, Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals. Chem. Mater. 3, 547 (2009).

    Article  Google Scholar 

  105. O Madelung, Semiconductors data handbook, SSBM, (2004).

  106. G. Schmitz, P. Gassmann, and R. Franchy, A combined scanning tunneling microscopy and electron energy loss spectroscopy study on the formation of thin, well-ordered β-Ga2O3 films on CoGa (001). J. Appl. Phys. 5, 2533 (1998).

    Article  Google Scholar 

  107. T.V. Perevalov, A.V. Shaposhnikov, V.A. Gritsenko, H. Wong, J.H. Han, and C.W. Kim, Electronic structure of α-Al2O3. Jetp Lett. 85, 165 (2007).

    Article  CAS  Google Scholar 

  108. R.M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences, and uses. JWS. 15, 3 (1997).

    Google Scholar 

  109. K.J. Kim and Y.R. Park, Optical investigation of charge-transfer transitions in spinel Co3O4. Solid State Commun. 1, 25 (2003).

    Article  Google Scholar 

  110. A. Walsh and G. Watson, The origin of the stereochemically active Pb (II) lone pair: DFT calculations on PbO and PbS. J. Solid State Chem. 5, 1422 (2005).

    Article  Google Scholar 

  111. A. Walsh and G.W. Watson, Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory. Phys. Rev. B 23, 235114 (2004).

    Article  Google Scholar 

  112. J. Geurts, S. Rau, W. Richter, and F.J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and x-ray diffraction studies. Thin Solid Films 3, 217 (1984).

    Article  Google Scholar 

  113. V. Dolocan, Some electrical properties of Bi2O3 thin films. Phys. Stat. Sol. 45, 2 (2016).

    Google Scholar 

  114. L. Kong, H. Chen, W. Hua, S. Zhanga, and J. Chen, Mesoporous bismuth titanate with visible-light photocatalytic activity. Chem. Commun. 40, 4977 (2008).

    Article  Google Scholar 

  115. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe, and H. Sugihara, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J. Phys. Chem. B 23, 11352 (2006).

    Article  Google Scholar 

  116. M. Long, W. Cai, and H.J. Kisch, Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J. Phys. Chem. 2, 548 (2008).

    Google Scholar 

  117. K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe, and H. Arakawa, Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Commun. 23, 2908 (2003).

    Article  Google Scholar 

  118. M. Mishra and D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 34, 126 (2015).

    Article  Google Scholar 

  119. S. Haghighat and J. Dawlaty, Continuous representation of the proton and electron kinetic parameters in the pH–potential space for water oxidation on hematite. J. Phys. Chem. 12, 6619 (2015).

    Google Scholar 

  120. C.G. Morales-Guio, M.T. Mayer, A. Yella, S.D. Tilley, M. Grätzel, and X. Hu, An optically transparent iron nickel oxide catalyst for solar water splitting. J. Am. Chem. Soc. 31, 9927 (2015).

    Article  Google Scholar 

  121. A.W. Amer, M.A. El-Sayed, and N.K. Allam, Tuning the photoactivity of zirconia nanotubes-based photoanodes via ultrathin layers of ZrN: an effective approach toward visible-light water splitting. J. Phys. Chem. 3, 7025 (2016).

    Google Scholar 

  122. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, and J. Tang, Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 3, 731 (2015).

    Article  Google Scholar 

  123. V.J. Babu, S. Vempati, T. Uyar, and S. Ramakrishna, Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Phys. Chem. Chem. Phys. 5, 2960 (2015).

    Article  Google Scholar 

  124. K. Sivula, F.L. Formal, and M. Gratzel, WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem. Mater. 13, 2862 (2009).

    Article  Google Scholar 

  125. X. Zhan, Z. Wang, F. Wang, Z. Cheng, X. Kai, Q. Wang, M. Safdar, and J. He, Efficient CoO nanowire array photocatalysts for H2 generation. Appl Phys. Lett. 15, 53903 (2014).

    Google Scholar 

  126. L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, and J. Bao, Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnology 1, 69 (2014).

    Article  Google Scholar 

  127. J. Jasieniak, M. Califano, and S.E. Watkins, Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 7, 5888 (2011).

    Article  Google Scholar 

  128. R. Asai, H. Nemoto, Q. Jia, K. Saito, A. Iwase, and A. Kudo, A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem. Commun. 19, 2543 (2014).

    Article  Google Scholar 

  129. K. Furuhashi, Q. Jia, A. Kudo, and H. Onishi, Time-resolved infrared absorption study of SrTiO3 photocatalysts codoped with rhodium and antimony. J. Phys. Chem. C 37, 19101 (2013).

    Article  Google Scholar 

  130. T. Takata and K. Domen, Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. J. Phys. Chem. C 45, 19386 (2009).

    Article  Google Scholar 

  131. H.W. Kang, S.N. Lim, D. Song, and S.B. Park, Organic-inorganic composite of g-C3N4-SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 16, 11602 (2012).

    Article  Google Scholar 

  132. X. Lü, S. Ding, T. Lin, X. Mou, Z. Hong, and F. Huang, Ta2O5 nanowires: a novel synthetic method and their solar energy utilization. Dalton Trans. 2, 622 (2012).

    Article  Google Scholar 

  133. C. Tao, L. Xu, and J. Guan, Well-dispersed mesoporous Ta2O5 submicrospheres: Enhanced photocatalytic activity by tuning heating rate at calcination. J. Chem. Eng. 229, 371 (2013).

    Article  CAS  Google Scholar 

  134. L. Mao, S. Zhu, J. Ma, D. Shi, Y. Chen, Z. Chen, C. Yin, Y. Li, and D. Zhang, Superior H2 production by hydrophilic ultrafine Ta2O5 engineered covalently on graphene. Nanotechnology 21, 215401 (2014).

    Article  Google Scholar 

  135. G. Zhu, T. Lin, H. Cui, W. Zhao, H. Zhang, and F.H. Gray, Ta2O5 nanowires with greatly enhanced photocatalytic performance. ACS Appl. Mater. Interfaces 1, 122 (2016).

    Article  Google Scholar 

  136. A.A. Ismail, and D. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol. Energy Mater. Sol. 22, 85 (2014).

    Article  Google Scholar 

  137. I. Majeed, M.A. Nadeem, M. Al-Oufi, M.A. Nadeem, G.I.N. Waterhouse, A. Badshah, J.B. Metson, and H. Idriss, On the role of metal particle size and surface coverage for photo-catalytic hydrogen production: a case study of the Au/CdS system. Appl. Catal. B 182, 266 (2016).

    Article  CAS  Google Scholar 

  138. M.R. Gholipour, C.-T. Dinh, F. Béland, and T.-O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale. 18, 187 (2015).

    Google Scholar 

  139. J. Cao, J.-Z. Sun, J. Hong, H.-Y. Li, H.-Z. Chen, and M. Wang, Carbon nanotube/CdS core–shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater. 1, 84 (2004).

    Article  Google Scholar 

  140. Z.-F. Huang, K. Jiajia Song, M.T. Li, L. Yu-Tong Wang, L.W. Pan, X. Zhang, and J.-J. Zou, Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 4, 1359 (2016).

    Article  Google Scholar 

  141. J. Ran, J. Zhang, J. Yu, M. Jaroniecc, and S.Z. Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 22, 7787 (2014).

    Article  Google Scholar 

  142. P. Reiss, M. Protiere, and L. Li, Core/shell semiconductor nanocrystals. Nano Micro Small 2, 154 (2009).

    Google Scholar 

  143. J. Zhang, J. Yu, M. Jaroniec, and J.R. Gong, Noble metal-free reduced graphene oxide ZnxCd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 9, 4584 (2012).

    Article  Google Scholar 

  144. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, Zn1–xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal. 5, 882 (2013).

    Article  Google Scholar 

  145. Y.X. Pan, H. Zhuang, J. Hong, Z. Fang, H. Liu, B. Liu, Y. Huang, and R. Xu, Cadmium sulfide quantum dots supported on gallium and indium oxide for visible-light-driven hydrogen evolution from water. Chemsuschem 9, 2537 (2014).

    Article  Google Scholar 

  146. X. Wang, G. Liu, L. Gao Qing, and H.-M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO-CdS core–shell nanorods. Int J. Hydrogen 15, 8199 (2010).

    Article  Google Scholar 

  147. J. Hou, Z. Wang, W. Kan, S. Jiao, H. Zhu, and R.V. Kumar, Efficient visible-light-driven photocatalytic hydrogen production using CdS@ TaON core–shell composites coupled with graphene oxide nanosheets. J. Mater. Chem. 15, 7291 (2012).

    Article  Google Scholar 

  148. S. Bai and X. Shen, Graphene–inorganic nanocomposites. RSC Adv. 1, 64 (2012).

    Article  Google Scholar 

  149. Z. Cheng, Z. Wang, T.A. Shifa, F. Wang, X. Zhan, K. Xu, Q. Liu, and J. He, Au plasmonics in a WS2-Au-CuInS2 photocatalyst for significantly enhanced hydrogen generation. Appl. Phys. Lett. 22, 223902 (2015).

    Article  Google Scholar 

  150. M.R. Gao, Y.F. Xu, J. Jiang, Y. Zheng, and S. Hong, Correction to water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 16, 6378 (2013).

    Article  Google Scholar 

  151. M.R. Gao, Z.Y. Lin, T. Zhuang, J. Jiang, Y. Xu, Y. Zhenga, and S. Yu, Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production. J. Mater. Chem. 27, 13662 (2012).

    Article  Google Scholar 

  152. Z. Xu and J. Moore, Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter. Angew. Chem. 9, 1354 (1993).

    Article  Google Scholar 

  153. D. Kong, J.J. Cha, H. Wang, H.R. Lee, and Yi. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 12, 3553 (2013).

    Article  Google Scholar 

  154. M.R. Gao, X. Cao, Q. Gao, Y. Xu, Y. Zheng, J. Jiang, and S. Hong, Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. Nano 4, 3970 (2014).

    Google Scholar 

  155. Y. Sun, F. Alimohammadi, D. Zhang, and G. Guo, Enabling colloidal synthesis of edge-oriented MoS2 with expanded interlayer spacing for enhanced HER catalysis. Nano Lett. 3, 1963 (2014).

    Google Scholar 

  156. Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao, S. Wei, B. Ye, and Y. Xie, Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 44, 15670 (2014).

    Article  Google Scholar 

  157. M.R. Gao, J. Xia Liang, Y.-R. Zheng, Xu. Yun-Fei, J. Jiang, Q. Gao, J. Li, and S.H. Yu, An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 1, 5982 (2015).

    Article  Google Scholar 

  158. H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, and S. Jin, Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem. Mater. 16, 5702 (2015).

    Article  Google Scholar 

  159. Q. Liu, J. Shi, J. Hu, A.M. Asiri, Y. Luo, and X. Sun, CoSe2 nanowires array as a 3D electrode for highly efficient electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 7, 3877 (2015).

    Article  CAS  Google Scholar 

  160. H. Zhang, B. Yang, X. Wu, Z. Li, L. Lei, and X. Zhang, Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 3, 1772 (2015).

    Article  Google Scholar 

  161. C. Tang, N. Cheng, Z. Pu, W. Xing, and X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. 32, 9483 (2015).

    Article  Google Scholar 

  162. S. Guo, (2017) Trace elements in coal gangue: a review, Contributions to Mineralization

  163. N.B. Pawar, S.S. Mali, S.D. Kharade, V.V. Kondalkar, V.B. Ghanwat, K.V. Khot, P.S. Patil, and P.N. Bhosale, Microwave assisted novel MoBi2S5 nanoflowers: synthesis, characterization, photoelectrochemical performance. Solid State Sci. 61, 89 (2016).

    Article  CAS  Google Scholar 

  164. H.D. Dhaygude, S.K. Shinde, D.P. Dubal, N.B. Velhal, D.Y. Kim, and V.J. Fulari, Structural, optical, and photoelectrochemical properties of nanosphere-like CdX Zn1−XS synthesized by electrochemical route. Ionics. 23, 223 (2017).

    Article  CAS  Google Scholar 

  165. X. Chia, A. Ambrosi, P. Lazar, Z. Soferc, and M. Pumera, Electrocatalysis of layered group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X= S, Se, and Te). J. Mater. Chem. A. 37, 14241 (2016).

    Article  Google Scholar 

  166. H. Qiao, Z. Huang, S. Liu, Y. Liu, J. Li, and X. Qi, Liquid-exfoliated molybdenum telluride nanosheets with superior electrocatalytic hydrogen evolution performances. Ceram. Int. 17, 21205 (2018).

    Article  Google Scholar 

  167. P. Zhuang, Y. Sun, P. Dong, W. Smith, Z. Sun, Y. Ge, Y. Pei, Z. Cao, P.M. Ajayan, J. Shen, and M. Ye, Revisiting the role of active sites for hydrogen evolution reaction through precise defect adjusting. Adv. Funct. Mater. 33, 1901290 (2019).

    Article  Google Scholar 

  168. Z. Wang and L. Zhang, Nickel ditelluride nanosheet arrays: a highly efficient electrocatalyst for the oxygen evolution reaction. ChemElectroChem 8, 1153 (2018).

    Article  Google Scholar 

  169. U. De Silva, J. Masud, N. Zhang, Y. Hong, W.P.R. Liyanage, M.A. Zaeem, and M. Nath, Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. J. Mater. Chem. A. 17, 7608 (2018).

    Article  Google Scholar 

  170. F. Zhang, M. Tae-yil Eom, H.-J.L. Cho, and H. Pang, Fabrication of defect-rich bifunctional hollow NiTe2 nanotubes for high performance hydrogen evolution electrocatalysts and supercapacitors. J. Energy Storage. 22, 103098 (2021).

    Article  Google Scholar 

  171. A. Sivanantham, S. Hyun, M. Son, and S. Shanmugam, Nanostructured core–shell cobalt chalcogenides for efficient water oxidation in alkaline electrolyte. Electrochim. Acta 4, 234 (2019).

    Article  Google Scholar 

  172. L. Ji, Z. Wang, H. Wang, X. Shi, A.M. Asiri, and X. Sun, Hierarchical CoTe2 nanowire array: an effective oxygen evolution catalyst in alkaline media. ACS Sustain. Chem. Eng. 4, 4481 (2018).

    Article  Google Scholar 

  173. I. Amorim and L. Liu, Transition metal tellurides as emerging catalysts forelectrochemical water splitting. Curr. Opin. Electrochem. 34, 101031 (2022).

    Article  CAS  Google Scholar 

  174. Y. Qi, J. Wu, J. Xu, H. Gao, Z. Du, B. Liu, L. Liu, and D. Xiong, One-step fabrication of a self-supported Co@CoTe2 electrocatalyst for efficient and durable oxygen evolution reactions. Inorg. Chem. Front. 13, 2523 (2020).

    Article  Google Scholar 

  175. R. Wang, Y. Liu, Z. Tian, Y. Shi, Q. Xu, G. Zhang, J. Chen, and W. Zheng, Copper telluride nanosheet/Cu foil electrode: facile ionic liquid-assisted synthesis and efficient oxygen evolution performance. J. Phys. Chem. C 40, 22117 (2020).

    Article  Google Scholar 

  176. X. Wu, Lu. Liangjie, L. Hongzheng Liu, W.L. Feng, and L. Sun, Metalloid Te-doped Fe-based catalysts applied for electrochemical water oxidation. ChemistrySelect. 24, 6154 (2021).

    Article  Google Scholar 

  177. L. Yang, H. Xu, H. Liu, D. Cheng, and D. Cao, Active site identification and evaluation criteria of in situ grown CoTe and NiTe nanoarrays for hydrogen evolution and oxygen evolution reactions. Small Methods. 5, 1900113 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Safdar.

Ethics declarations

Conflict of interest

All authors participated in study conception and design, or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content; and approval of the final version. This manuscript has not been submitted to, nor is under review, at another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, S., Awais, M., Ahmed, S. et al. Photoelectrochemical Water Splitting by Using Nanomaterials: A Review. J. Electron. Mater. 53, 1–15 (2024). https://doi.org/10.1007/s11664-023-10794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10794-z

Keywords

Navigation