Skip to main content

Advertisement

Log in

Anodized metal oxide nanostructures for photoelectrochemical water splitting

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting offers the capability of harvesting, storing, and converting solar energy into clean and sustainable hydrogen energy. Metal oxides are appealing photoelectrode materials because of their easy manufacturing and relatively high stability. In particular, metal oxides prepared by electrochemical anodization are typical of ordered nanostructures, which are beneficial for light harvesting, charge transfer and transport, and the adsorption and desorption of reactive species due to their high specific surface area and rich channels. However, bare anodic oxides still suffer from low charge separation and sunlight absorption efficiencies. Accordingly, many strategies of modifying anodic oxides have been explored and investigated. In this review, we attempt to summarize the recent advances in the rational design and modifications of these oxides from processes before, during, and after anodization. Rational design strategies are thoroughly addressed for each part with an aim to boost overall PEC performance. The ongoing efforts and challenges for future development of practical PEC electrodes are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.Q. Gao, Q. Sun, Z. Fang, G.T. Li, M.Z. Jia, and X.M. Hou, Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 73.

    Article  CAS  Google Scholar 

  2. H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244.

    Article  CAS  Google Scholar 

  3. S.N. Li, R.X. Ma, and C.Y. Wang, Solid-phase synthesis of Cu2MoS4 nanoparticles for degradation of methyl blue under a halogen-tungsten lamp, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 310.

    Article  CAS  Google Scholar 

  4. R. Kullaiah, L. Elias, and A.C. Hegde, Effect of TiO2 nanoparticles on hydrogen evolution reaction activity of Ni coatings, Int. J. Miner. Metall. Mater., 25(2018), No. 4, p. 472.

    Article  CAS  Google Scholar 

  5. H.G. Park and J.K. Holt, Recent advances in nanoelectrode architecture for photochemical hydrogen production, Energy Environ. Sci., 3(2010), No. 8, p. 1028.

    Article  CAS  Google Scholar 

  6. B.A. Pinaud, J.D. Benck, L.C. Seitz, A.J. Forman, Z.B. Chen, T.G. Deutsch, B.D. James, K.N. Baum, G.N. Baum, S. Ardo, H.L. Wang, E. Miller, and T.F. Jaramillo, Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy Environ. Sci., 6(2013), No. 7, p. 1983.

    Article  CAS  Google Scholar 

  7. A. Mehta, A. Mishra, S. Basu, N.P. Shetti, K.R. Reddy, T.A. Saleh, and T.M. Aminabhavi, Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—A review, J. Environ. Manage., 250(2019), art. No. 109486.

  8. Z. Wang, R.R. Roberts, G.F. Naterer, and K.S. Gabriel, Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies, Int. J. Hydrogen Energy, 37(2012), No. 21, p. 16287.

    Article  CAS  Google Scholar 

  9. Y. Yang, S.W. Niu, D.D. Han, T.Y. Liu, G.M. Wang, and Y. Li, Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting, Adv. Energy Mater., 7(2017), No. 19, art. No. 1700555.

  10. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, and K. Yoo, Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment, Electrochim. Acta, 317(2019), p. 416.

    Article  CAS  Google Scholar 

  11. C.V. Reddy, I.N. Reddy, B. Akkinepally, V.V.N. Harish, K.R. Reddy, and S. Jaesool, Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation, Ceram. Int., 45(2019), No. 12, p. 15298.

    Article  CAS  Google Scholar 

  12. S.C. Huang and C.Y. Lin, Electrosynthesis, activation, and applications of nickel-iron oxyhydroxide in (photo-)electrochemical water splitting at near neutral condition, Electrochim. Acta, 321(2019), art. No. 134667.

  13. Y.K. Gaudy and S. Haussener, Rapid performance optimization method for photoelectrodes, J. Phys. Chem. C, 123(2019), No. 36, p. 21838.

    Article  CAS  Google Scholar 

  14. P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, and R.R. Kakarla, Enhanced photocatalytic activity and biosensing of gadolinium substituted BiFeO3 nanoparticles, ChemistrySelect, 3(2018), No. 31, p. 9025.

    Article  CAS  Google Scholar 

  15. R.Z. Chen, C. Zhen, Y.Q. Yang, X.D. Sun, J.T.S. Irvine, L.Z. Wang, G. Liu, and H.M. Cheng, Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell, Nano Energy, 59(2019), p. 683.

    Article  CAS  Google Scholar 

  16. T. Higashi, H. Nishiyama, Y. Suzuki, Y. Sasaki, T. Hisatomi, M. Katayama, T. Minegishi, K. Seki, T. Yamada, and K. Domen, Transparent Ta3N5 photoanodes for efficient oxygen evolution toward the development of tandem cells, Angew. Chem. Int. Ed., 58(2019), No. 8, p. 2300.

    Article  CAS  Google Scholar 

  17. K.R. Reddy, C.V. Reddy, M.N. Nadagouda, N.P. Shetti, S. Jaesool, and T.M. Aminabhavi, Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: Synthesis methods, properties and photocatalytic applications, J. Environ. Manage., 238(2019), p. 25.

    Article  CAS  Google Scholar 

  18. A. Mishra, A. Mehta, S. Basu, N.P. Shetti, K.R. Reddy, and T.M. Aminabhavi, Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review, Carbon, 149(2019), p. 693.

    Article  CAS  Google Scholar 

  19. J. Seo, M. Nakabayashi, T. Hisatomi, N. Shibata, T. Minegishi, and K. Domen, Solar-driven water splitting over a BaTaO2N photoanode enhanced by annealing in argon, ACS Appl. Energy Mater., 2(2019), No. 8, p. 5777.

    Article  CAS  Google Scholar 

  20. Y.W. Wang, S. Jin, G.X. Pan, Z.X. Li, L. Chen, G. Liu, and X.X. Xu, Zr doped mesoporous LaTaON2 for efficient photocatalytic water splitting, J. Mater. Chem. A, 7(2019), No. 10, p. 5702.

    Article  CAS  Google Scholar 

  21. L. Wang, Y.T. Qian, J.M. Du, H.R. Wu, Z. Wang, G. Li, K.D. Li, W.M. Wang, and D.J. Kang, Facile synthesis of cactus-shaped CdS–Cu9S5 heterostructure on copper foam with enhanced photoelectrochemical performance, Appl. Surf. Sci., 492(2019), p. 849.

    Article  CAS  Google Scholar 

  22. S. Chandrasekaran, L. Yao, L.B. Deng, C. Bowen, Y. Zhang, S.M. Chen, Z.Q. Lin, F. Peng, and P.X. Zhang, Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chem. Soc. Rev., 48(2019), No. 15, p. 4178.

    Article  CAS  Google Scholar 

  23. J. Ge, Y. Yu, and Y.F. Yan, Earth-abundant trigonal BaCu2Sn (SexS1−x)4 (x = 0–0.55) thin films with tunable band gaps for solar water splitting, J. Mater. Chem. A, 4(2016), No. 48, p. 18885.

    Article  CAS  Google Scholar 

  24. Y.R. Lu, P.F. Yin, J. Mao, M.J. Ning, Y.Z. Zhou, C.K. Dong, T. Ling, and X.W. Du, A stable inverse opal structure of cadmium chalcogenide for efficient water splitting, J. Mater. Chem. A, 3(2015), No. 36, p. 18521.

    Article  CAS  Google Scholar 

  25. V. Andrei, R.L.Z. Hoye, M. Crespo-Quesada, M. Bajada, S. Ahmad, M. De Volder, R. Friend, and E. Reisner, Scalable triple cation mixed halide perovskite–BiVO4 tandems for bias-free water splitting, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801403.

  26. R. Katsube, K. Kazumi, T. Tadokoro, and Y. Nose, Reactive epitaxial formation of a Mg–P–Zn ternary semiconductor in Mg/Zn3P2 solar cells, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 36102.

    Article  CAS  Google Scholar 

  27. Q. Li, M.J. Zheng, B. Zhang, C.Q. Zhu, F.Z. Wang, J.N. Song, M. Zhong, L. Ma, and W.Z. Shen, Inp nanopore arrays for photoelectrochemical hydrogen generation, Nanotechnology, 27(2016), No. 7, art. No. 075704.

  28. F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev., 42(2013), No. 6, p. 2294.

    Article  CAS  Google Scholar 

  29. F. Qian, G.M. Wang, and Y. Li, Solar-driven microbial photoelectrochemical cells with a nanowire photocathode, Nano Lett., 10(2010), No. 11, p. 4686.

    Article  CAS  Google Scholar 

  30. B.S. Wang, R.Y. Li, Z.Y. Zhang, W.W. Zhang, X.L. Yan, X.L. Wu, G.A. Cheng, and R.T. Zheng, Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting, J. Mater. Chem. A, 5(2017), No. 27, p. 14415.

    Article  CAS  Google Scholar 

  31. Z.W. Wang, X.L. Li, C.K. Tan, C. Qian, A.C. Grimsdale, and A.I.Y. Tok, Highly porous SnO2 nanosheet arrays sandwiched within TiO2 and CdS quantum dots for efficient photoelectrochemical water splitting, Appl. Surf. Sci., 470(2019), p. 800.

    Article  CAS  Google Scholar 

  32. Q. Cao, J. Yu, K.P. Yuan, M. Zhong, and J.J. Delaunay, Facile and large-area preparation of porous Ag3PO4 photoanodes for enhanced photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces, 9(2017), No. 23, p. 19507.

    Article  CAS  Google Scholar 

  33. E.Y. Haque, Y. Yamauchi, V. Malgras, K.R. Reddy, J.W. Yi, M.S.A. Hossain, and J. Kim, Nanoarchitectured graphene-organic frameworks (GOFs): Synthetic strategies, properties, and applications, Chem. Asian J., 13(2018), No. 23, p. 3561.

    Article  CAS  Google Scholar 

  34. P.S. Shinde, M.A. Mahadik, S.Y. Lee, J. Ryu, S.H. Choi, and J.S. Jang, Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation, Chem. Eng. J., 320(2017), p. 81.

    Article  CAS  Google Scholar 

  35. Z. Li, L. Shi, D. Franklin, S. Koul, A. Kushima, and Y. Yang, Drastic enhancement of photoelectrochemical water splitting performance over plasmonic Al@TiO2 heterostructured nanocavity arrays, Nano Energy, 51(2018), p. 400.

    Article  CAS  Google Scholar 

  36. C.Y. Hu, K. Chu, Y.H. Zhao, and W.Y. Teoh, Efficient photoelectrochemical water splitting over anodized p-type NiO porous films, ACS Appl. Mater. Interfaces, 6(2014), No. 21, p. 18558.

    Article  CAS  Google Scholar 

  37. X.C. Dai, S. Hou, M.H. Huang, Y.B. Li, T. Li, and F.X. Xiao, Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion, J. Phys. Energy, 1(2019), art. No. 022002.

  38. Y.L. He, R.D. Xu, S.W. He, H.S. Chen, K. Li, Y. Zhu, and Q.F. Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 288.

    Article  CAS  Google Scholar 

  39. S.H. Lv and J. Wang, The technical support of nanoart: Anodization process, Anti-Corros. Methods Mater., 66(2019), No. 2, p. 242.

    Article  CAS  Google Scholar 

  40. M.C. Huang, T.H. Wang, B.J. Wu, J.C. Lin, and C.C. Wu, Anodized ZnO nanostructures for photoelectrochemical water splitting, Appl. Surf. Sci., 360(2016), p. 442.

    Article  CAS  Google Scholar 

  41. Y.K. Li, H.M. Yu, C.K. Zhang, W. Song, G.F. Li, Z.G. Shao, and B.L. Yi, Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell, Electrochim. Acta, 107(2013), p. 313.

    Article  CAS  Google Scholar 

  42. R. Sánchez-Tovar, R.M. Fernández-Domene, D.M. García-García, and J. García-Antón, Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization, J. Power Sources, 286(2015), p. 224.

    Article  CAS  Google Scholar 

  43. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27(1999), No. 7, p. 629.

    Article  CAS  Google Scholar 

  44. P. Qiu, H.F. Yang, Y. Song, L.J. Yang, L.J. Lv, X. Zhao, L. Ge, and C.F. Chen, Potent and environmental-friendly Lcysteine @ Fe2O3 nanostructure for photoelectrochemical water splitting, Electrochim. Acta, 259(2018), p. 86.

    Article  CAS  Google Scholar 

  45. A. Apolinário, T. Lopes, C. Costa, J.P. Araújo, and A.M. Mendes, Multilayered WO3 nanoplatelets for efficient photoelectrochemical water splitting: The role of the annealing ramp, ACS Appl. Energy Mater., 2(2019), No. 2, p. 1040.

    Article  CAS  Google Scholar 

  46. R.V. Gonçalves, H. Wender, P. Migowski, A.F. Feil, D. Eberhardt, J. Boita, S. Khan, G. Machado, J. Dupont, and S.R. Teixeira, Photochemical hydrogen production of Ta2O5 nanotubes decorated with NiO nanoparticles by modified sputtering deposition, J. Phys. Chem. C, 121(2017), No. 11, p. 5855.

    Article  CAS  Google Scholar 

  47. S. John, S.S. Vadla, and S.C. Roy, High photoelectrochemical activity of CuO nanoflakes grown on Cu foil, Electrochim. Acta, 319(2019), p. 390.

    Article  CAS  Google Scholar 

  48. A. Sápi, A. Varga, G.F. Samu, D. Dobó, K.L. Juhász, B. Takács, E. Varga, Á. Kukovecz, Z. Kónya, and C. Janáky, Photoelectrochemistry by design: Tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance, J. Phys. Chem. C, 121(2017), No. 22, p. 12148.

    Article  CAS  Google Scholar 

  49. K. Sivula, F. Le Formal, and M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes, ChemSusChem, 4(2011), No. 4, p. 432.

    Article  CAS  Google Scholar 

  50. C.Y. Lee, L. Wang, Y. Kado, R. Kirchgeorg, and P. Schmuki, Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting, Electrochem. Commun., 34(2013), p. 308.

    Article  CAS  Google Scholar 

  51. Y.Q. Wan, A.N. Xu, C.F. Dong, C. He, K. Xiao, Y.W. Tian, and X.G. Li, Co/Mn co-doped TiO2 nanotube arrays for enhanced photoelectrochemical properties: Experimental and DFT investigations, J. Mater. Sci., 53(2018), No. 14, p. 9988.

    Article  CAS  Google Scholar 

  52. K. Chitrada, K.S. Raja, D. Rodriguez, and D. Chidambaram, Photoelectrochemical behavior of nanoporous oxide of FeNdB alloy, J. Electrochem. Soc., 162(2015), No. 4, p. H220.

    Article  CAS  Google Scholar 

  53. T. Li, D.Y. Ding, Z.B. Dong, and C.Q. Ning, Photoelectrochemical water splitting properties of Ti–Ni–Si–O nanostructures on Ti–Ni–Si alloy, Nanomaterials, 7(2017), No. 11, p. 359.

    Article  CAS  Google Scholar 

  54. X.F. Zhang, B.Y. Zhang, Y.P. Luo, X.W. Lv, and Y. Shen, Phosphate modified N/Si co-doped rutile TiO2 nanorods for photoelectrochemical water oxidation, Appl. Surf. Sci., 391(2017), p. 288.

    Article  CAS  Google Scholar 

  55. S.H. Liu, L.X. Yang, S.H. Xu, S.L. Luo, and Q.Y. Cai, Photocatalytic activities of C–N-doped TiO2 nanotube array/carbon nanorod composite, Electrochem. Commun., 11(2009), No. 9, p. 1748.

    Article  CAS  Google Scholar 

  56. Q.N. Sun, Y.P. Peng, H.L. Chen, K.L. Chang, Y.N. Qiu, and S.W. Lai, Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays, J. Hazard. Mater., 319(2016), p. 121.

    Article  CAS  Google Scholar 

  57. B.J. Rani, M. Praveenkumar, S. Ravichandran, V. Ganesh, R.K. Guduru, G. Ravi, and R. Yuvakkumar, Ultrafine Mdoped TiO2 (M = Fe, Ce, La) nanosphere photoanodes for photoelectrochemical water-splitting applications, Mater. Charact., 152(2019), p. 188.

    Article  CAS  Google Scholar 

  58. Y.C. Yin, X.W. Zhang, and C.H. Sun, Transition-metal-doped Fe2O3 nanoparticles for oxygen evolution reaction, Prog. Nat. Sci. Mater. Int., 28(2018), No. 4, p. 430.

    Article  CAS  Google Scholar 

  59. M.C. Huang, W.S. Chang, J.C. Lin, Y.H. Chang, and C.C. Wu, Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting, J. Alloys Compd., 636(2015), p. 176.

    Article  CAS  Google Scholar 

  60. X.B. Bu, Y.X. Gao, S.H. Zhang, and Y. Tian, Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation, Chem. Eng. J., 355(2019), p. 910.

    Article  CAS  Google Scholar 

  61. A. Sreedhar, I.N. Reddy, Q.T. Hoai Ta, G. Namgung, E. Cho, and J.S. Noh, Facile growth of novel morphology correlated Ag/Co-doped ZnO nanowire/flake-like composites for superior photoelectrochemical water splitting activity, Ceram. Int., 45(2019), No. 6, p. 6985.

    Article  CAS  Google Scholar 

  62. S.B. Wang, X.W. Zhang, S. Li, Y. Fang, L. Pan, and J.J. Zou, C-doped ZnO ball-in-ball hollow microspheres for efficient photocatalytic and photoelectrochemical applications, J. Hazard. Mater., 331(2017), p. 235.

    Article  CAS  Google Scholar 

  63. S.S. Kalanur, I.H. Yoo, and H. Seo, Fundamental investigation of Ti doped WO3 photoanode and their influence on photoelectrochemical water splitting activity, Electrochim. Acta, 254(2017), p. 348.

    Article  CAS  Google Scholar 

  64. Y. Liu, J. Li, W.Z. Li, Y.H. Yang, Y.M. Li, and Q.Y. Chen, Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping, J. Phys. Chem. C, 119(2015), No. 27, p. 14834.

    Article  CAS  Google Scholar 

  65. A.K. Vishwakarma, P. Tripathi, A. Srivastava, A.S.K. Sinha, and O.N. Srivastava, Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route, Int. J. Hydrogen Energy, 42(2017), No. 36, p. 22677.

    Article  CAS  Google Scholar 

  66. Z.B. Dong, D.Y. Ding, T. Li, and C.Q. Ning, Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation, Appl. Surf. Sci., 436(2018), p. 125.

    Article  CAS  Google Scholar 

  67. D. Kim, S. Fujimoto, P. Schmuki, and H. Tsuchiya, Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys, Electrochem. Commun., 10(2008), No. 6, p. 910.

    Article  CAS  Google Scholar 

  68. M. Mollavali, C. Falamaki, and S. Rohani, Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications, Int. J. Hydrogen Energy, 43(2018), No. 19, p. 9259.

    Article  CAS  Google Scholar 

  69. M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, J. Karczewski, and J. Ryl, Facile preparation of extremely photoactive borondoped TiO2 nanotubes arrays, Electrochem. Commun., 60(2015), p. 212.

    Article  CAS  Google Scholar 

  70. P. Parnicka, P. Mazierski, W. Lisowski, T. Klimczuk, J. Nadolna, and A. Zaleska-Medynska, A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation, Results Phys., 12(2019), p. 412.

    Article  Google Scholar 

  71. M.L. Wang, X.X. Wang, J. Lin, X.W. Ning, X.J. Yang, X.H. Zhang, and J.L. Zhao, Preparation and photoluminescence properties of Eu3+-doped ZrO2 nanotube arrays, Ceram. Int., 41(2015), No. 7, p. 8444.

    Article  CAS  Google Scholar 

  72. M.H. Xia, L.L. Huang, Y.B. Zhang, and Y.Q. Wang, Enhanced photocatalytic activity of La3+-doped TiO2 nanotubes with full wave-band absorption, J. Electron. Mater., 47(2018), No. 9, p. 5291.

    Article  CAS  Google Scholar 

  73. M. Altomare, K. Lee, M.S. Killian, E. Selli, and P. Schmuki, Ta-doped TiO2 nanotubes for enhanced solar-light photoelectrochemical water splitting, Chem. Eur. J., 19(2013), No. 19, p. 5841.

    Article  CAS  Google Scholar 

  74. C. Das, P. Roy, M. Yang, H. Jha, and P. Schmuki, Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting, Nanoscale, 3(2011), No. 8, p. 3094.

    Article  CAS  Google Scholar 

  75. Z.B. Dong, D.Y. Ding, T. Li, and C.Q. Ning, Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting, Appl. Surf. Sci., 443(2018), p. 321.

    Article  CAS  Google Scholar 

  76. J.L. Zhao, X.X. Wang, Y.R. Kang, X.W. Xu, and Y.X. Li, Photoelectrochemical activities of W-doped titania nanotube arrays fabricated by anodization, IEEE Photonics Technol. Lett., 20(2008), No. 14, p. 1213.

    Article  CAS  Google Scholar 

  77. J.D. Yu, Z. Wu, C. Gong, W. Xiao, L. Sun, and C.J. Lin, Fe3+-doped TiO2 nanotube arrays on Ti–Fe alloys for enhanced photoelectrocatalytic activity, Nanomaterials, 6(2016), No. 6, p. 107.

    Article  Google Scholar 

  78. A. Zaffora, M. Santamaria, F. Di Franco, H. Habazaki, and F. Di Quarto, Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering-deposited Al–Ta alloys, Phys. Chem. Chem. Phys., 18(2016), No. 1, p. 351.

    Article  CAS  Google Scholar 

  79. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, and C.A. Grimes, Vertically oriented Ti–Fe–O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis, Nano Lett., 7(2007), No. 8, p. 2356.

    Article  CAS  Google Scholar 

  80. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, and C.A. Grimes, P-type Cu–Ti–O nanotube arrays and their use in self-biased hetero-junction photoelectrochemical diodes for hydrogen generation, Nano Lett., 8(2008), No. 7, p. 1906.

    Article  CAS  Google Scholar 

  81. N.T.C. Oliveira, A.C. Guastaldi, S. Piazza, and C. Sunseri, Photo-electrochemical investigation of anodic oxide films on cast Ti–Mo alloys. I. Anodic behaviour and effect of alloy composition, Electrochim. Acta, 54(2009), No. 5, p. 1395.

    Article  CAS  Google Scholar 

  82. P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki, Oxide nanotubes on Ti–Ru alloys: Strongly enhanced and stable photoelectrochemical activity for water splitting, J. Am. Chem. Soc., 133(2011), No. 15, p. 5629.

    Article  CAS  Google Scholar 

  83. T. Cottineau, N. Béalu, P.A. Gross, S.N. Pronkin, N. Keller, E.R. Savinova, and V. Keller, One step synthesis of niobium doped titania nanotube arrays to form (N, Nb) co-doped TiO2 with high visible light photoelectrochemical activity, J. Mater. Chem. A, 1(2013), No. 6, p. 2151.

    Article  CAS  Google Scholar 

  84. M. Mollavali, C. Falamaki, and S. Rohani, Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization, Int. J. Hydrogen Energy, 40(2015), No. 36, p. 12239.

    Article  CAS  Google Scholar 

  85. X.Y. Ma, Z.R. Sun, and X. Hu, Synthesis of tin and molybdenum co-doped TiO2 nanotube arrays for the photoelectrocatalytic oxidation of phenol in aqueous solution, Mater. Sci. Semicond. Process., 85(2018), p. 150.

    Article  CAS  Google Scholar 

  86. H. Yoo, Y.W. Choi, and J. Choi, Ruthenium oxide-doped TiO2 nanotubes by single-step anodization for water-oxidation applications, ChemCatChem, 7(2015), No. 4, p. 643.

    Article  CAS  Google Scholar 

  87. H. Ali, N. Ismail, M. Mekewi, and A. Hengazy, Facile one-step process for synthesis of vertically aligned cobalt oxide doped TiO2 nanotube arrays for solar energy conversion, J. Solid State Electrochem., 19(2015), No. 10, p. 3019.

    Article  CAS  Google Scholar 

  88. H. Yoo, K. Oh, Y.R. Lee, K.H. Row, G. Lee, and J. Choi, Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting, Int. J. Hydrogen Energy, 42(2017), No. 10, p. 6657.

    Article  CAS  Google Scholar 

  89. Y.W. Choi, S. Kim, M. Seong, H. Yoo, and J. Choi, NH4-doped anodic WO3 prepared through anodization and subsequent NH4OH treatment for water splitting, Appl. Surf. Sci., 324(2015), p. 414.

    Article  CAS  Google Scholar 

  90. H. Bemana and S. Rashid-Nadimi, Effect of sulfur doping on photoelectrochemical performance of hematite, Electrochim. Acta, 229(2017), p. 396.

    Article  CAS  Google Scholar 

  91. Y.Z. Chen, A.X. Li, Q. Li, X.M. Hou, L.N. Wang, and Z.H. Huang, Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting, J. Mater. Sci. Technol., 34(2018), No. 6, p. 955.

    Article  Google Scholar 

  92. J. Georgieva, E. Valova, S. Armyanov, D. Tatchev, S. Sotiropoulos, I. Avramova, N. Dimitrova, A. Hubin, and O. Steenhaut, A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance, Appl. Surf. Sci., 413(2017), p. 284.

    Article  CAS  Google Scholar 

  93. Y.Y. Liu, Y. Li, W.Z. Li, S. Han, and C.J. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light, Appl. Surf. Sci., 258(2012), No. 12, p. 5038.

    Article  CAS  Google Scholar 

  94. D. Ding, B. Zhou, S.R. Liu, G.J. Zhu, X.W. Meng, J.D. Yang, W.Y. Fu, and H.B. Yang, A facile approach for photoelectrochemical performance enhancement of CdS QD-sensitized TiO2 via decorating {001} facet-exposed nano-polyhedrons onto nanotubes, RSC Adv., 7(2017), No. 59, p. 36902.

    Article  CAS  Google Scholar 

  95. G.M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, and Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation, Nano Lett., 10(2010), No. 3, p. 1088.

    Article  CAS  Google Scholar 

  96. C.J. Liu, Y.H. Yang, W.Z. Li, J. Li, Y.M. Li, Q.L. Shi, and Q.Y. Chen, Highly efficient photoelectrochemical hydrogen generation using ZnxBi2S3+x sensitized platelike WO3 photoelectrodes, ACS Appl. Mater. Interfaces, 7(2015), No. 20, p. 10763.

    Article  CAS  Google Scholar 

  97. Y.M. Zhu, R.L. Wang, W.P. Zhang, H.Y. Ge, and L. Li, CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical property, Appl. Surf. Sci., 315(2014), p. 149.

    Article  CAS  Google Scholar 

  98. Y.M. Xin, Z.Z. Li, W.L. Wu, B.H. Fu, and Z.H. Zhang, Pyrite FeS2 sensitized TiO2 nanotube photoanode for boosting near-infrared light photoelectrochemical water splitting, ACS Sustainable Chem. Eng., 4(2016), No. 12, p. 6659.

    Article  CAS  Google Scholar 

  99. K. Sekizawa, S. Sato, T. Arai, and T. Morikawa, Solar-driven photocatalytic CO2 reduction in water utilizing a ruthenium complex catalyst on p-type Fe2O3 with a multiheterojunction, ACS Catal., 8(2018), No. 2, p. 1405.

    Article  CAS  Google Scholar 

  100. F. Ronconi, Z. Syrgiannis, A. Bonasera, M. Prato, R. Argazzi, S. Caramori, V. Cristino, and C.A. Bignozzi, Modification of nanocrystalline WO3 with a dicationic perylene bisimide: Applications to molecular level solar water splitting, J. Am. Chem. Soc., 137(2015), No. 14, p. 4630.

    Article  CAS  Google Scholar 

  101. M. Yamamoto, L. Wang, F.S. Li, T. Fukushima, K. Tanaka, L.C. Sun, and H. Imahori, Visible light-driven water oxidation using a covalently-linked molecular catalyst-sensitizer dyad assembled on a TiO2 electrode, Chem. Sci., 7(2016), No. 2, p. 1430.

    Article  CAS  Google Scholar 

  102. A.Y. Pang, L.C. Xia, H.Y. Luo, Y.F. Li, and M.D. Wei, Highly efficient indoline dyes co-sensitized solar cells composed of titania nanorods, Electrochim. Acta, 94(2013), p. 92.

    Article  CAS  Google Scholar 

  103. M. Pastore and F. De Angelis, First-principles modeling of a dye-sensitized TiO2/IrO2 photoanode for water oxidation, J. Am. Chem. Soc., 137(2015), No. 17, p. 5798.

    Article  CAS  Google Scholar 

  104. Y.C. Qiu, Z.H. Pan, H.N. Chen, D.Q. Ye, G. Lin, Z.Y. Fan, and S.H. Yang, Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting, Sci. Bull., 64(2019), No. 18, p. 1348.

    Article  CAS  Google Scholar 

  105. C.V. Reddy, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, and D.D. Dionysiou, Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting–A review, Int. J. Hydrogen Energy, 2019, https://doi.org/10.1016/j.ijhydene.2019.02.109.

  106. H.B. Liu, J.L. Xu, Y.J. Li, and Y.L. Li, Aggregate nanostructures of organic molecular materials, Acc. Chem. Res., 43(2010), No. 12, p. 1496.

    Article  CAS  Google Scholar 

  107. J. Weickert, R.B. Dunbar, H.C. Hesse, W. Wiedemann, and L. Schmidt-Mende, Nanostructured organic and hybrid solar cells, Adv. Mater., 23(2011), No. 16, p. 1810.

    Article  CAS  Google Scholar 

  108. V.M. Agranovich, Y.N. Gartstein, and M. Litinskaya, Hybrid resonant organic–inorganic nanostructures for optoelectronic applications, Chem. Rev., 111(2011), No. 9, p. 5179.

    Article  CAS  Google Scholar 

  109. Y.Z. Chen, A.X. Li, X.Q. Yue, L.N. Wang, Z.H. Huang, F.Y. Kang, and A.A. Volinsky, Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting, Nanoscale, 8(2016), No. 27, p. 13228.

    Article  CAS  Google Scholar 

  110. Y.Z. Chen, A.X. Li, M. Jin, L.N. Wang, and Z.H. Huang, Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties, J. Mater. Sci. Technol., 33(2017), No. 7, p. 728.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0700300), the National Natural Science Foundation of China (Nos. 51503014 and 51501008), and the Fundamental Research Funds for the Central Universities of China (No. 230201818-002A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yz., Jiang, Dj., Gong, Zq. et al. Anodized metal oxide nanostructures for photoelectrochemical water splitting. Int J Miner Metall Mater 27, 584–601 (2020). https://doi.org/10.1007/s12613-020-1983-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1983-6

Keywords

Navigation