Skip to main content
Log in

An Approach for CdS-QD-Based Layered Heterostructure Electrodes for Supercapacitor Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the design of supercapacitor electrode materials, a large active surface area for energy storage, reduced ion diffusion pathway, low charge conduction resistance, and mechanical reliability in relation to energy density during charging and discharging are fundamental requirements. In this work, layered heterostructure materials were fabricated by a chemical route and achieved extraordinary results, obtaining supercapacitors with good electrochemical compatibility. The electron transfer in the layered structure significantly enhanced the electropotential and current photocurrent for the effective separation of electron–hole pairs. The as-prepared fluorine-doped tin oxide substrate/titanium dioxide/cadmium sulfide quantum dots/polyaniline (FTO/TiO2/CdS-QDs/PANI) demonstrates outstanding supercapacitive performance (1118.5 Fg−1 at 5 Ag−1) and exceptional rate efficiency (800.7 Fg−1 at 20 A g−1) with the incorporation of CdS-QDs and PANI layer. The fabricated supercapacitor device provides optimal energy density of 67.4 Wh kg−1 at power density of 1544.3 W kg−1. The significant results were associated with the TiO2 nanostructure, which can promote more rapid ion diffusion, and CdS-QDs that can produce high ion diffusion in the materials while improving the stability of the electrodes. Furthermore, the fabricated asymmetric supercapacitor exhibits good cyclic stability, with 70% capacitive retention after 5000 cycles. The present research work reveals an effective new way to assemble layered electrodes for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets produced during or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Wu, Y. Zhu, C. Guan, C. Jia, W. Qin, X. Wang, and K. Zhang, Mesoporous aluminium manganese cobalt oxide with pentahedron structures for energy storage devices. J. Mater. Chem. A 7, 18417–18427 (2019).

    Article  CAS  Google Scholar 

  2. J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, and Z. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, 2003021 (2020).

    Article  CAS  Google Scholar 

  3. J. Hao, X. Li, X. Zeng, D. Li, J. Mao, and Z. Guo, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13, 3917–3949 (2020).

    Article  CAS  Google Scholar 

  4. L. Zeng, X. Lou, J. Zhang, C. Wu, J. Liu, and C. Jia, Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coat. Technol. 357, 580–586 (2019).

    Article  CAS  Google Scholar 

  5. X. Yang, J. Mao, H. Niu, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, and J. Yan, NiS2/MoS2 mixed phases with abundant active edge sites induced by sulfidation and graphene introduction towards high-rate supercapacitors. Chem. Eng. J. 406, 126713 (2021).

    Article  CAS  Google Scholar 

  6. F.N.I. Sari and J.M. Ting, MoS2/MoOx-nanostructure-decorated activated carbon cloth for enhanced supercapacitor performance. Chem. Sus. Chem. 11, 897–906 (2018).

    Article  CAS  Google Scholar 

  7. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012).

    Article  CAS  Google Scholar 

  8. H. Zhou and Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J. Phys. Chem. C 118, 5626–5636 (2014).

    Article  CAS  Google Scholar 

  9. K.T. Kubra, R. Hafeez, G. Ali, H. Ahmad, A. Butt, A. Salman, R. Sharif, M. Sultana, and M. Bashir, Electrochemical investigation of a novel quaternary composite based on dichalcogenides, reduced graphene oxide, and polyaniline as a high-performance electrode for hybrid supercapacitor applications. J. Alloy. Compd. 909, 164854 (2022).

    Article  CAS  Google Scholar 

  10. H. Wu, D. Li, X. Zhu, C. Yang, D. Liu, X. Chen, Y. Song, and L. Lu, High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. Electrochim. Acta 116, 129–136 (2014).

    Article  CAS  Google Scholar 

  11. B.S. Rao, B.R. Kumar, V.R. Reddy, and T.S. Rao, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalcogenide Lett. 8, 177–185 (2011).

    CAS  Google Scholar 

  12. H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, and Z. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27, 1117–1123 (2015).

    Article  CAS  Google Scholar 

  13. F. Beguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014).

    Article  CAS  Google Scholar 

  14. K.L. Van Aken, M. Beidaghi, and Y. Gogotsi, Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. 127, 4888–4891 (2015).

    Article  Google Scholar 

  15. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015).

    Article  CAS  Google Scholar 

  16. F. Liu, S. Luo, D. Liu, W. Chen, Y. Huang, L. Dong, and L. Wang, Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. Appl. Mater. Interf. ACS. 9, 33791–33801 (2017).

    Article  CAS  Google Scholar 

  17. S.Y. Chen, X.Y. Zhang, B. Liu, H. Shi, F. Chen, C.L. Hu, and J. Chen, Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires. Electrochim. Acta 292, 435–445 (2018).

    Article  CAS  Google Scholar 

  18. S. Tian, C. Zhao, P. Nie, H. Wang, X. Xue, L. Lin, and L. Chang, Electrochemical deposition enables freestanding CoNi layered double hydroxide/MnOX electrode with enhanced electrochemical properties for asymmetric supercapacitors. Energy Technol. 7, 1900680 (2019).

    Article  CAS  Google Scholar 

  19. R. Kumuthini, R. Ramachandran, H.A. Therese, and F. Wang, Electrochemical properties of electrospun MoS2@C nanofiber as electrode material for high-performance supercapacitor application. J. Alloy. Compd. 705, 624–630 (2017).

    Article  CAS  Google Scholar 

  20. G. Kun, Strongly intrinsic anharmonicity in the low-frequency Raman mode in nanocrystalline anatase TiO. Physica B 398, 33–37 (2007).

    Article  Google Scholar 

  21. P. Liu, J. Yan, X. Gao, Y. Huang, and Y. Zhang, Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim. Acta 272, 77–87 (2018).

    Article  CAS  Google Scholar 

  22. W. Luo, C. Zhang, Y. Cui, S. Yan, Q. Qin, and Z. Jing, One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J Mater ChemA. 5, 11278–11285 (2017).

    Article  CAS  Google Scholar 

  23. S. Chen, B. Liu, X. Zhang, F. Chen, H. Shi, C. Hu, and J. Chen, Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochim. Acta 300, 373–379 (2019).

    Article  CAS  Google Scholar 

  24. K. Yang, Z. Luo, D. Shu, F. Yi, Z. Zhu, and A. Gao, Design of few-layered 1T-MoS2 by supramolecular-assisted assembly with N-doped carbon quantum dots for supercapacitor. J. Electroanalytical Chem. 908, 116093 (2022).

    Article  CAS  Google Scholar 

  25. A. Orendorz, A. Brodyanski, J. Losch, L.H. Bai, Z.H. Chen, Y.K. Le, and C.H. Ziegler, Gnaser phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by x-ray diffraction and raman spectroscopy. Surf. Sci. 601, 4390–4394 (2007).

    Article  CAS  Google Scholar 

  26. G. Cheng, M.S. Akhtar, O.B. Yang, and F.J. Stadler, Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim. Acta 113, 527–535 (2013).

    Article  CAS  Google Scholar 

  27. G.M. Nascimento and M.A. Temperini, Studies on the resonance Raman spectra of polyaniline obtained with near-IR excitation. J Raman Spect. 39, 772–778 (2008).

    Article  Google Scholar 

  28. K. Yang, A. Gao, H. Wu, F. Yi, D. Shu, X. Li, and L. Xie, Layered molybdenum disulfide coated carbon hollow spheres synthesized through supramolecular self-assembly applied to supercapacitors. Int. J. Energy Res. 44, 7082–7092 (2020).

    Article  CAS  Google Scholar 

  29. J. Zhou, M. Guo, L. Wang, Y. Ding, Z. Zhang, Y. Tang, C. Liu, and S. Luo, 1T-MoS2 nanosheets confined among TiO2 nanotube arrays for high performance supercapacitor. Chem. Eng. J. 366, 163–171 (2019).

    Article  CAS  Google Scholar 

  30. D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, and Z. Sun, Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272–12277 (2013).

    Article  CAS  Google Scholar 

  31. W. Kong, C. Lu, W. Zhang, J. Pu, and Z. Wang, Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 3, 12452–12460 (2015).

    Article  CAS  Google Scholar 

  32. B. Wang, R. Hu, J. Zhang, Z. Huang, H. Qiao, L. Gong, and X. Qi, 2D/2D SnS2/MoS2 layered heterojunction for enhanced supercapacitor performance. J. Am. Ceram. Soc. 103, 1088–1096 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Researcher supporting program at King Saud University, Riyadh, for funding this work under the project number (RSPD2023R699).

Author information

Authors and Affiliations

Authors

Contributions

SMA: Conceptualization, Writing—review & editing, Supervision, Formal analysis, Writing—original draft.

Corresponding author

Correspondence to Syed Mansoor Ali.

Ethics declarations

Conflict of interest

The author confirms that there is no conflict of interest or competing interests with regard to this work.

Ethical Approval

This article does not contain any studies involving animals performed by the author. In addition, this article does not contain any studies involving human participants performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M. An Approach for CdS-QD-Based Layered Heterostructure Electrodes for Supercapacitor Applications. J. Electron. Mater. 53, 207–216 (2024). https://doi.org/10.1007/s11664-023-10762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10762-7

Keywords

Navigation