Skip to main content
Log in

Green Synthesis of Super-Hydrophobic MXene–Hexaferrite Composite for EMI Shielding

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This research introduces a green synthesis route for a MXene/PVDF (polyvinylidene fluoride) composite using electrospinning to realize ultra-thin mats with super-hydrophobic properties. Comparative analysis between mats designed using conventional solvent casting and electrospinning techniques was carried out to identify superior electromagnetic interference shielding (EMI) behavior of MXenes at ultra-low concentrations (2 wt.%) and its dependence on morphological characteristics. Herein, a novel composition of MXenes and barium–cobalt hexaferrite (BaM) mediated via microwave heating (15 min) is explored. MXene/BaM composites were synthesized using solvent casting and electrospinning techniques. These materials have a wide range of functional applications, including EMI shielding, stealth, and the reduction of the radar cross-section (RCS) for small unmanned aerial vehicles (sUAVs). The material impressively achieved good functional and operating bandwidth, which was 4.1 GHz in the designated 8–13 GHz frequency range for these characteristics and applications. In the designated frequency range, the achieved return loss characteristic was almost −32 dB. This result was obtained with a very minimum thickness of MXene/BaM composites of 20 µm. This study aims to develop sustainable and efficient EMI shielding systems for reducing EMI pollution and which can be further expanded for future technologies such as solar cells, batteries, supercapacitors, e-fabrics, stealth, sUAVs, RCS reduction applications, and many more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2019, Royal society of Chemistry.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in the submitted manuscript.

Code Availability

Not applicable.

References

  1. A. Sohan, P. Banoth, M. Aleksandrova, A. Nirmala Grace, and P. Kollu, Review on MXene synthesis, properties, and recent research exploring electrode architecture for supercapacitor applications. Int. J. Energy Res. 45, 19746 (2021).

    Article  CAS  Google Scholar 

  2. A. Balmori, Electromagnetic pollution from phone masts effects on wildlife. Pathophysiology 16, 191–199 (2009).

    Article  Google Scholar 

  3. A.R. Pai, T. Binumol, D.A. Gopakumar, D. Pasquini, B. Seantier, N. Kalarikkal, and S. Thomas, Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydr. Polym 246, 116663 (2020).

    Article  CAS  Google Scholar 

  4. R. Prasad, A.R. Pai, S.O. Oyadiji, S. Thomas, and S.K.S. Parashar, Utilization of hazardous red mud in silicone rubber/MWCNT nanocomposites for high performance electromagnetic interference shielding. J. Clean. Prod 377, 134290 (2022).

    Article  CAS  Google Scholar 

  5. G.G. Nair, A.R. Pai, N. Kalarikkal, S. Thomas, and P.C. Thomas, Electromagnetic attenuation performance of sustainable e-textile derived from polypyrrole impregnated jute fabrics with predominant microwave absorption. J. Nat. Fibers 19, 13348 (2022).

    Article  CAS  Google Scholar 

  6. A. Joshi, A. Bajaj, R. Singh, P.S. Alegaonkar, K. Balasubramanian, and S. Datar, Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 24, 455705 (2013).

    Article  Google Scholar 

  7. R. Magisetty, D. Prajapati, R. Ambekar, A. Shukla, and B. Kandasubramanian, β-phase Cu-phthalocyanine/acrylonitrile butadiene styrene terpolymer nanocomposite film technology for organoelectronic applications. J. Phys. Chem. C 123, 28081 (2019).

    Article  CAS  Google Scholar 

  8. C.G. Jayalakshmi, A. Inamdar, A. Anand, and B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. 136, 47241 (2018).

    Article  Google Scholar 

  9. R. Magisetty, A.B. Raj, S. Datar, A. Shukla, and B. Kandasubramanian, Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application. J. Alloys Compd. 848, 155771 (2020).

    Article  CAS  Google Scholar 

  10. V. Prajapati, K. Yadav, A.C. Abhyankar, and B. Kandasubramanian, PVDF based electrospun composite material for electromagnetic interference (EMI) shielding application. Polym. Plast. Technol. Mater. 61, 296 (2022).

    CAS  Google Scholar 

  11. Y. Li, H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, P.O.Å. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X.-H. Zha, S. Du, P. Rozier, Z. Chai, E. Raymundo-Piñero, P.-L. Taberna, P. Simon, and Q. Huang, A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894 (2020).

    Article  CAS  Google Scholar 

  12. W. Eom, H. Shin, R.B. Ambade, S.H. Lee, K.H. Lee, D.J. Kang, and T.H. Han, Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 11, 2825 (2020).

    Article  CAS  Google Scholar 

  13. F. Dixit, K. Zimmermann, M. Alamoudi, L. Abkar, B. Barbeau, M. Mohseni, B. Kandasubramanian, and K. Smith, Application of MXenes for air purification, gas separation and storage: a review. Renew. Sust. Energy Rev. 164, 112527 (2022).

    Article  CAS  Google Scholar 

  14. F. Dixit, G. Munoz, M. Mirzaei, B. Barbeau, J. Liu, S.V. Duy, S. Sauvé, B. Kandasubramanian, and M. Mohseni, Removal of zwitterionic PFAS by MXenes: comparisons with anionic, nonionic, and PFAS-specific resins. Environ. Sci. Technol. 56, 6212 (2022).

    Article  CAS  Google Scholar 

  15. N. Jaya Prakash and B. Kandasubramanian, Nanocomposites of MXene for industrial applications. J. Alloys Compd. 862, 158547 (2021).

    Article  CAS  Google Scholar 

  16. N. Jaya Prakash and B. Kandasubramanian, Industrial applications of nanocomposites of MXene, Nanoparticle-Based Polymer Composites. (Amsterdam: Elsevier, 2022), pp. 481–503.

    Chapter  Google Scholar 

  17. K.K. Sawant, A. Satapathy, K. Mahimkar, S. Krishnamurthy, A. Kaur, B. Kandasubramanian, and A.A.B. Raj, Recent advances in MXene nanocomposites as electromagnetic radiation absorbing materials. J. Electron. Mater. 52, 3576–3590 (2023).

    Article  CAS  Google Scholar 

  18. S.M. George and B. Kandasubramanian, Advancements in MXene-polymer composites for various biomedical applications. Ceram. Int 46, 8522 (2020).

    Article  CAS  Google Scholar 

  19. N.R. Hemanth and B. Kandasubramanian, Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: a review. Chem. Eng. J 392, 123678 (2020).

    Article  CAS  Google Scholar 

  20. M. Naguib, M.W. Barsoum, and Y. Gogotsi, Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).

    Article  CAS  Google Scholar 

  21. S. Saxena, M. Johnson, F. Dixit, K. Zimmermann, S. Chaudhuri, F. Kaka, and B. Kandasubramanian, Thinking green with 2-D and 3-D MXenes: environment friendly synthesis and industrial scale applications and global impact. Renew. Sust. Energy Rev. 178, 113238 (2023).

    Article  CAS  Google Scholar 

  22. K. Li, J. Liao, S. Huang, Y. Lei, Y. Zhang, and W. Zhu, Enhanced catalytic properties of cobaltosic oxide through constructing MXene-supported nanocomposites for ammonium perchlorate thermal decomposition. Appl. Surf. Sci. 570, 151224 (2021).

    Article  CAS  Google Scholar 

  23. M. Jiang, M. Jiang, H. Gao, J. Chen, W. Liu, Y. Ma, W. Luo, and J. Yang, Comparison of additives in anode: the case of graphene, MXene, CNTs integration with silicon inside carbon nanofibers. Acta Metall. Sin. (English Letters) 34, 337 (2021).

    Article  CAS  Google Scholar 

  24. M. Tahir and B. Tahir, 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem. Eng. J 400, 125868 (2020).

    Article  CAS  Google Scholar 

  25. A.M. Patil, N. Kitiphatpiboon, X. An, X. Hao, S. Li, X. Hao, A. Abudula, and G. Guan, Fabrication of a high-energy flexible all-solid-state supercapacitor using pseudocapacitive 2D-Ti3C2Tx-MXene. ACS Appl. Mater. Interfaces 12, 52749 (2020).

    Article  CAS  Google Scholar 

  26. G. Jia, A. Zheng, X. Wang, L. Zhang, L. Li, C. Li, Y. Zhang, and L. Cao, Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sens. Actuators B Chem. 346, 130507 (2021).

    Article  CAS  Google Scholar 

  27. S.A.M. Chachuli, M.N. Hamidon, M. Ertugrul, M.S. Mamat, O. Coban, F.N. Tuzluca, Y.O. Yesilbag, and N.H. Shamsudin, Effects of MWCNTs/graphene nanoflakes/MXene addition to TiO2 thick film on hydrogen gas sensing. J. Alloys Compd. 882, 160671 (2021).

    Article  CAS  Google Scholar 

  28. J. Jimmy and B. Kandasubramanian, Mxene functionalized polymer composites: synthesis and applications. Eur. Polym. J. 122, 109367 (2020).

    Article  CAS  Google Scholar 

  29. F. Dixit, K. Zimmermann, R. Dutta, N.J. Prakash, B. Barbeau, M. Mohseni, and B. Kandasubramanian, Application of MXenes for water treatment and energy-efficient desalination: a review. J. Hazard. Mater. 423, 127050 (2022).

    Article  CAS  Google Scholar 

  30. Y. Lei, Z. Yao, S. Li, J. Zhou, A.A. Haidry, and P. Liu, Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int 46, 10006 (2020).

    Article  CAS  Google Scholar 

  31. C. Cui, R. Guo, E. Ren, H. Xiao, M. Zhou, X. Lai, Q. Qin, S. Jiang, and W. Qin, MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J 405, 126626 (2021).

    Article  CAS  Google Scholar 

  32. Z. Wang, Z. Cheng, C. Fang, X. Hou, and L. Xie, Recent advances in MXenes composites for electromagnetic interference shielding and microwave absorption. Compos. Part A Appl. Sci. Manuf. 136, 105956 (2020).

    Article  CAS  Google Scholar 

  33. Y. Yamada, K. Ohmi, R. Tsunematu, H. Yokota, T. Yamada, K. Tanemura, T. Sonoda, K. Kishi, and S. Teshima, Gynandroblastoma of the ovary having a typical morphological appearance: a case study. Jpn. J. Clin. Oncol. 21, 62 (1991).

    CAS  Google Scholar 

  34. B.D.S. Deeraj, K.J. Shebin, S. Bose, S. Sampath, and K. Joseph, Electrospun carbon fibers embedded with core–shell TiC@TiO2 nanostructures and their epoxy composites for potential EMI shielding in the Ku band. Nano-Struct. Nano-Objects 32, 100912 (2022).

    Article  CAS  Google Scholar 

  35. S. Senthil, S. Srinivasan, T. Thangeeswari, B.J. Madhu, and M. Silambarasan, EMI shielding effectiveness, linear and nonlinear optical properties of CdO/SnO2 nanocomposites. Nano-Struct. Nano-Objects 24, 100554 (2020).

    Article  Google Scholar 

  36. S. Tu, Q. Jiang, X. Zhang, and H.N. Alshareef, Large dielectric constant enhancement in mxene percolative polymer composites. ACS Nano 12, 3369 (2018).

    Article  CAS  Google Scholar 

  37. W. Li, Z. Song, J. Zhong, J. Qian, Z. Tan, X. Wu, H. Chu, W. Nie, and X. Ran, Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C 7, 10371 (2019).

    Article  CAS  Google Scholar 

  38. K. Čech Barabaszová, S. Holešová, L. Plesník, Z. Kolská, K. Joszko, and B. Gzik-Zroska, Hybrid nanofillers creating the stable PVDF Nanocomposite films and their effect on the friction and mechanical properties. Polymers 14, 3831 (2022).

    Article  Google Scholar 

  39. Y.-J. Wan, X.-M. Li, P.-L. Zhu, R. Sun, C.-P. Wong, and W.-H. Liao, ightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 130, 105764 (2020).

    Article  CAS  Google Scholar 

  40. S. Iqbal, G. Kotnala, J. Shah, and S. Ahmad, Barium ferrite nanoparticles: a highly effective EMI shielding material. Mater. Res. Express 6, 055018 (2019).

    Article  CAS  Google Scholar 

  41. M. Zahid, S. Siddique, R. Anum, M.F. Shakir, Y. Nawab, and Z.A. Rehan, M-type barium Hexaferrite-based nanocomposites for EMI shielding application: a review. J. Supercond. Nov. Magn. 34, 1019 (2021).

    Article  CAS  Google Scholar 

  42. D.L. Johnson, Microwave heating of grain boundaries in ceramics. J. Am. Ceram. Soc. 74, 849 (1991).

    Article  CAS  Google Scholar 

  43. Y. Li, X. Zhou, J. Wang, Q. Deng, M. Li, S. Du, Y.-H. Han, J. Lee, and Q. Huang, Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Adv. 7, 24698 (2017).

    Article  CAS  Google Scholar 

  44. K. Rajavel, S. Luo, Y. Wan, X. Yu, Y. Hu, P. Zhu, R. Sun, and C. Wong, 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos. Part A Appl. Sci. Manuf. 129, 105693 (2020).

    Article  CAS  Google Scholar 

  45. X. Cai, T. Lei, D. Sun, and L. Lin, A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 7, 15382 (2017).

    Article  CAS  Google Scholar 

  46. G. Qi, Y. Liu, Y. Chen, Q. Liu, J. Chen, Q. Yin, and H. Zhang, Crystallographically oriented W-type barium hexaferrite BaZn2Fe16−xScxO27 with high squareness ratio. J. Mater. Sci. Mater. Electron. 32, 25769 (2021).

    Article  CAS  Google Scholar 

  47. S. Sutradhar, S. Saha, and S. Javed, hielding effectiveness study of barium hexaferrite-incorporated, β-phase-improved poly(vinylidene fluoride) composite film: a metamaterial useful for the reduction of electromagnetic pollution. ACS Appl. Mater. Interfaces 11, 23701 (2019).

    Article  CAS  Google Scholar 

  48. B.N. Sahoo and B. Kandasubramanian, Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. RSC Adv. 4, 22053 (2014).

    Article  CAS  Google Scholar 

  49. P.M. Gore and B. Kandasubramanian, Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. J. Mater. Chem. A 6, 7457 (2018).

    Article  CAS  Google Scholar 

  50. P.M. Gore, M. Naebe, X. Wang, and B. Kandasubramanian, Nano-fluoro dispersion functionalized superhydrophobic degummed & waste silk fabric for sustained recovery of petroleum oils & organic solvents from wastewater. J. Hazard. Mater. 426, 127822 (2022).

    Article  CAS  Google Scholar 

  51. H. Liu and E.T. Thostenson, Conductive nanocomposites for multifunctional sensing applications, Comprehensive Composite Materials. (Amsterdam: Elsevier, 2018), pp. 315–351.

    Chapter  Google Scholar 

  52. R.R.S. de Barnasky, J.C. Frankowiak, C.V. Opelt, and L.A.F. Coelho, Percolation threshold and depression in properties of polymer nanocomposites. Mater. Res. 25, e20220137 (2022).

    Article  Google Scholar 

  53. J. Li and J.-K. Kim, Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Compos. Sci. Technol. 67, 2114 (2007).

    Article  CAS  Google Scholar 

  54. F. Xie, F. Jia, L. Zhuo, Z. Lu, L. Si, J. Huang, M. Zhang, and Q. Ma, Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. Nanoscale 11, 23382 (2019).

    Article  CAS  Google Scholar 

  55. Y. Yang, M.C. Gupta, K.L. Dudley, and R.W. Lawrence, A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J. Nanosci. Nanotechnol. 5, 927 (2005).

    Article  CAS  Google Scholar 

  56. G. Salimbeygi, K. Nasouri, A.M. Shoushtari, R. Malek, and F. Mazaheri, Fabrication of polyvinyl alcohol/multi-walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material. Micro Nano Lett. 8, 455 (2013).

    Article  CAS  Google Scholar 

  57. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45, 821 (2007).

    Article  CAS  Google Scholar 

  58. Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, and C. Lu, Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 6, 1802040 (2019).

    Article  Google Scholar 

  59. M.H. Al-Saleh and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47, 1738 (2009).

    Article  CAS  Google Scholar 

  60. M. Sharma, M.P. Singh, C. Srivastava, G. Madras, and S. Bose, Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl. Mater. Interfaces 6, 21151 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Dr. C. P. Ramanarayanan, Vice Chancellor, DIAT (DU), Pune for their support. The authors wish to extend their special thanks to Dr. Amrita Nighojkar, Ms. Niranjana J P, Mr. Jigar Patadiya, Ms. Alsha Subash, Ms. Neelaambhigai Mayilswamy and Mr. Alok Kumar, for their unwavering and continuous technical support throughout the research writing. The authors are thankful to the Editor and anonymous reviewers for their valuable inputs to improve the quality of the manuscript.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

The submitted article complies with the ethical guidelines of the journal and does not contain the results of studies involving humans and/or animals.

Consent to Participate

Not applicable.

Consent for Publication

The authors consent to publish the article on acceptance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 889 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, K.K., Saxena, S., Shindalkar, S.S. et al. Green Synthesis of Super-Hydrophobic MXene–Hexaferrite Composite for EMI Shielding. J. Electron. Mater. 52, 8237–8249 (2023). https://doi.org/10.1007/s11664-023-10723-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10723-0

Keywords

Navigation