Skip to main content
Log in

Fluorinated ethylene propylene (FEP)/graphene nanoplatelet (GNP) nanocomposites as outstanding EMI shielding and heat dissipation material

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The progressive miniaturization of electronic devices necessitates effective protection against electromagnetic interference and overheating. This study aims to explore the potential of polymer nanocomposites as multifunctional materials to address these challenges in applications related to airborne and space technology. Our investigation focuses on the hypothesis that the incorporation of graphene nanoplatelets (GNPs) into a fluoropolymer matrix (fluorinated ethylene propylene—FEP) will yield a composite material capable of simultaneously providing electromagnetic interference (EMI) shielding and enhanced thermal properties. This research presents initial studies as the foundational step toward designing multifunctional materials for specialized airborne and space technologies applications. The samples, comprising FEP and GNP, were fabricated using a simple powdered masterbatch hot pressing technique, ensuring optimal filler dispersion within the matrix. The dispersion quality was evaluated using Raman mapping and sheet/volume resistivity analyses. Subsequently, adding 25 wt% GNP results in outstanding EMI shielding effectiveness: SETOT ~ 50 dB at 5 GHz for only 1-mm-thick sample and almost 3000% enhancement of thermal conductivity (exceeding 4 Wm−1 K−1), similarly nearly 2000% enhancement of thermal diffusivity (2 mm2 s−1) and an electrical conductivity of over 7 S cm−1 were observed. These results stand out for their remarkable values, especially considering the use of straightforward production methods without further structural improvements or metallic additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Boyer RR, Cotton JD, Mohaghegh M, Schafrik RE (2015) Materials considerations for aerospace applications. MRS Bull 40(12):1055–1066. https://doi.org/10.1557/mrs.2015.278

    Article  ADS  Google Scholar 

  2. Thiruchitrambalam M, Bubesh Kumar D, Shanmugam D, Jawaid M (2020) A review on PEEK composites—manufacturing methods, properties and applications. Mater Today Proc 33:1085–1092. https://doi.org/10.1016/j.matpr.2020.07.124

    Article  CAS  Google Scholar 

  3. Murali KP, Rajesh S, Prakash O, Kulkarni AR, Ratheesh R (2009) Comparison of alumina and magnesia filled PTFE composites for microwave substrate applications. Mater Chem Phys 113(1):290–295. https://doi.org/10.1016/j.matchemphys.2008.07.089

    Article  CAS  Google Scholar 

  4. https://www.3m.com/3M/en_US/p/d/b40070076/

  5. https://www.materialdatacenter.com/ms/en/Kynar/Arkema/Kynar%C2%AE+720/c08810c6/248

  6. Kreitlow M, Kebel R, Nieder F, Sabath F, Smailus F, Stadtler T (2015) Robustness of Ethernet in complex aircraft environment. In 2015 Asia–Pacific Symposium on Electromagnetic Compatibility (APEMC), IEEE, pp 657–660. https://doi.org/10.1109/APEMC.2015.7175283.

  7. Chung DDL (2020) Materials for electromagnetic interference shielding. Mater Chem Phys 255:123587. https://doi.org/10.1016/j.matchemphys.2020.123587

    Article  ADS  CAS  Google Scholar 

  8. Wang X-Y et al (2022) Electromagnetic interference shielding materials: recent progress, structure design, and future perspective. J Mater Chem C Mater 10(1):44–72. https://doi.org/10.1039/D1TC04702G

    Article  CAS  Google Scholar 

  9. Bharat N, Bose PSC (2021) An overview on the effect of reinforcement and wear behaviour of metal matrix composites. Mater Today Proc 46:707–713. https://doi.org/10.1016/j.matpr.2020.12.084

    Article  CAS  Google Scholar 

  10. Roh J-S, Chi Y-S, Kang TJ, Nam S (2008) Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Text Res J 78(9):825–835. https://doi.org/10.1177/0040517507089748

    Article  CAS  Google Scholar 

  11. Santhosi BVSRN, Ramji K, Rao NBRM (2020) Design and development of polymeric nanocomposite reinforced with graphene for effective EMI shielding in X-band. Physica B Condens Matter 586:412144. https://doi.org/10.1016/j.physb.2020.412144

    Article  CAS  Google Scholar 

  12. Panahi-Sarmad M, Noroozi M, Xiao X, Park CB (2022) Recent advances in graphene-based polymer nanocomposites and foams for electromagnetic interference shielding applications. Ind Eng Chem Res 61(4):1545–1568. https://doi.org/10.1021/acs.iecr.1c04116

    Article  CAS  Google Scholar 

  13. Bagotia N, Choudhary V, Sharma DK (2018) A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol 29(6):1547–1567. https://doi.org/10.1002/pat.4277

    Article  CAS  Google Scholar 

  14. Huang X et al (2020) Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng R Rep 142:100577. https://doi.org/10.1016/j.mser.2020.100577

    Article  Google Scholar 

  15. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54(8):5992–6026. https://doi.org/10.1007/s10853-018-03244-3

    Article  ADS  CAS  Google Scholar 

  16. Liang J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925. https://doi.org/10.1016/j.carbon.2008.12.038

    Article  CAS  Google Scholar 

  17. Pavlou C et al (2021) Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat Commun 12(1):4655. https://doi.org/10.1038/s41467-021-24970-4

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Sun X, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2010) Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution. J Phys Condens Matter 22(33):334216. https://doi.org/10.1088/0953-8984/22/33/334216

    Article  CAS  PubMed  Google Scholar 

  19. Chung S-L, Lin J-S (2016) Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules 21(5):670. https://doi.org/10.3390/molecules21050670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22. https://doi.org/10.1016/j.carbon.2008.09.039

    Article  CAS  Google Scholar 

  21. Shahil KMF, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12(2):861–867. https://doi.org/10.1021/nl203906r

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Łapińska A et al (2023) Non-metallic multifunctional PVDF—graphene nanoplatelets nanocomposites as an effective electromagnetic shield, thermal and electrical conductor. Mater Today Adv 18:100365. https://doi.org/10.1016/j.mtadv.2023.100365

    Article  CAS  Google Scholar 

  23. Cai X, Jiang Z, Zhang X, Gao T, Yue K, Zhang X (2018) Thermal property improvement of polytetrafluoroethylene nanocomposites with graphene nanoplatelets. RSC Adv 8(21):11367–11374. https://doi.org/10.1039/C8RA01047A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jinhong Yu, Huang X, Chao Wu, Jiang P (2011) Permittivity, thermal conductivity and thermal stability of poly(vinylidene fluoride)/graphene nanocomposites. IEEE Trans Dielectr Electr Insul 18(2):478–484. https://doi.org/10.1109/TDEI.2011.5739452

    Article  Google Scholar 

  25. Das A, Hayvaci HT, Tiwari MK, Bayer IS, Erricolo D, Megaridis CM (2011) Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding. J Colloid Interface Sci 353(1):311–315. https://doi.org/10.1016/j.jcis.2010.09.017

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cheng H-C, Chen C-R, Hsu S, Cheng K-B (2020) Electromagnetic shielding effectiveness and conductivity of PTFE/Ag/MWCNT conductive fabrics using the screen printing method. Sustainability 12(15):5899. https://doi.org/10.3390/su12155899

    Article  CAS  Google Scholar 

  27. Wei Q et al (2023) Scalable fabrication of nacre-structured graphene/polytetrafluoroethylene films for outstanding EMI shielding under extreme environment. Small 19(35):2302082. https://doi.org/10.1002/smll.202302082

    Article  CAS  Google Scholar 

  28. Lee MH, Kim HY, Kim J, Han JT, Lee Y-S, Woo JS (2020) Influence of oxyfluorinated graphite on fluorinated ethylene–propylene composites as bipolar plates. Carbon Lett 30(3):345–352. https://doi.org/10.1007/s42823-019-00103-2

    Article  Google Scholar 

  29. Park KS et al (2022) Fluorinated ethylene–propylene/graphite composites reinforced with silicon carbide for the bipolar plates of fuel cells. Int J Hydrog Energy 47(6):4090–4099. https://doi.org/10.1016/j.ijhydene.2021.11.028

    Article  CAS  Google Scholar 

  30. Park H-J, Woo JS, Kim SH, Park KS, Park SH, Park S-Y (2019) High-performance fluorinated ethylene-propylene/graphite composites interconnected with single-walled carbon nanotubes. Macromol Res 27(11):1161–1166. https://doi.org/10.1007/s13233-019-7156-7

    Article  CAS  Google Scholar 

  31. Zhang G, Yin J, Yan M, Zhang H, Yin X (2021) Improved through-plane thermal conductivity and mechanical properties of low-dielectric FEP/HBN composites by adding PTFE nanoparticles. ACS Appl Electron Mater 3(10):4568–4578. https://doi.org/10.1021/acsaelm.1c00710

    Article  CAS  Google Scholar 

  32. Olifirov LK, Stepashkin AA, Sherif G, Tcherdyntsev VV (2021) tribological, mechanical and thermal properties of fluorinated ethylene propylene filled with Al–Cu–Cr quasicrystals, polytetrafluoroethylene, synthetic graphite and carbon black. Polymers (Basel) 13(5):781. https://doi.org/10.3390/polym13050781

    Article  CAS  PubMed  Google Scholar 

  33. Tan X et al (2022) Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review. J Mater Sci Technol 117:238–250. https://doi.org/10.1016/j.jmst.2021.10.052

    Article  CAS  Google Scholar 

  34. Nah S, Kim D, Chung H, Han S, Yoon M (2007) A new quantitative Raman measurement scheme using Teflon as a novel intensity correction standard as well as the sample container. J Raman Spectrosc 38(5):475–482. https://doi.org/10.1002/jrs.1667

    Article  ADS  CAS  Google Scholar 

  35. Nagata K, Iwabuki H, Nigo H (1998) Effect of particle size of graphites on electrical conductivity of graphite/polymer composite. Compos Interfaces 6(5):483–495. https://doi.org/10.1163/156855499X00161

    Article  ADS  Google Scholar 

  36. Cunningham BD, Baird DG (2007) Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer. J Power Sources 168(2):418–425. https://doi.org/10.1016/j.jpowsour.2007.03.036

    Article  CAS  Google Scholar 

  37. Lee MH et al (2018) Structural optimization of graphite for high-performance fluorinated ethylene–propylene composites as bipolar plates. Int J Hydrog Energy 43(48):21918–21927. https://doi.org/10.1016/j.ijhydene.2018.09.104

    Article  CAS  Google Scholar 

  38. Szymański KR, Zaleski PA (2021) Determination of the sheet resistance of an infinite thin plate with five point contacts located at arbitrary positions. Measurement 169:108360. https://doi.org/10.1016/j.measurement.2020.108360

    Article  Google Scholar 

  39. Jiang Z et al (2017) Preparation and properties of melt-spinning fluorinated ethylene propylene fibres. High Perform Polym 29(4):476–483. https://doi.org/10.1177/0954008316651689

    Article  CAS  Google Scholar 

  40. Han S et al (2020) Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Nanotechnology 31(7):075702. https://doi.org/10.1088/1361-6528/ab5042

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Gresil M, Wang Z, Poutrel Q-A, Soutis C (2017) Thermal diffusivity mapping of graphene based polymer nanocomposites. Sci Rep 7(1):5536. https://doi.org/10.1038/s41598-017-05866-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sabira K, Jayakrishnan MP, Saheeda P, Jayalekshmi S (2018) On the absorption dominated EMI shielding effects in free standing and flexible films of poly(vinylidene fluoride)/graphene nanocomposite. Eur Polym J 99:437–444. https://doi.org/10.1016/j.eurpolymj.2017.12.034

    Article  CAS  Google Scholar 

  43. Yan D-X, Ren P-G, Pang H, Fu Q, Yang M-B, Li Z-M (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22(36):18772. https://doi.org/10.1039/c2jm32692b

    Article  CAS  Google Scholar 

  44. Xu L et al (2023) Double layered design for electromagnetic interference shielding with ultra-low reflection features: PDMS including carbon fibre on top and graphene on bottom. Compos Sci Technol 231:109797. https://doi.org/10.1016/j.compscitech.2022.109797

    Article  CAS  Google Scholar 

  45. Wang M, Tang X-H, Cai J-H, Wu H, Shen J-B, Guo S-Y (2021) Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177:377–402. https://doi.org/10.1016/j.carbon.2021.02.047

    Article  CAS  Google Scholar 

  46. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898. https://doi.org/10.1002/mame.201100035

    Article  CAS  Google Scholar 

  47. Alam FE et al (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A Mater 5(13):6164–6169. https://doi.org/10.1039/C7TA00750G

    Article  CAS  Google Scholar 

  48. Kuhn HH, Child AD, Kimbrell WC (1995) Toward real applications of conductive polymers. Synth Met 71(1–3):2139–2142. https://doi.org/10.1016/0379-6779(94)03198-F

    Article  CAS  Google Scholar 

  49. Chandrasekhar P, Naishadham K (1999) Broadband microwave absorption and shielding properties of a poly(aniline). Synth Met 105(2):115–120. https://doi.org/10.1016/S0379-6779(99)00085-5

    Article  CAS  Google Scholar 

  50. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285. https://doi.org/10.1016/S0008-6223(00)00184-6

    Article  CAS  Google Scholar 

  51. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746. https://doi.org/10.1016/j.carbon.2009.02.030

    Article  CAS  Google Scholar 

  52. Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113(2–3):919–926. https://doi.org/10.1016/j.matchemphys.2008.08.065

    Article  CAS  Google Scholar 

  53. Jiang D et al (2019) Electromagnetic interference shielding polymers and nanocomposites—a review. Polym Rev 59(2):280–337. https://doi.org/10.1080/15583724.2018.1546737

    Article  CAS  Google Scholar 

  54. Wang L, Ma Z, Zhang Y, Chen L, Cao D, Gu J (2021) Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3):413–431. https://doi.org/10.1002/sus2.21

    Article  CAS  Google Scholar 

  55. Patri M, Hande VR, Phadnis S, Deb PC (2004) Radiation-grafted solid polymer electrolyte membrane: thermal and mechanical properties of sulfonated fluorinated ethylene propylene copolymer (FEP)-graft-acrylic acid membranes. Polym Adv Technol 15(10):622–627. https://doi.org/10.1002/pat.512

    Article  CAS  Google Scholar 

  56. Pan J, Xiao C, Huang Y, Zhu Z (2020) Preparation and properties of melt-spun poly(fluorinated ethylene-propylene)/graphene composite fibers. Polym Compos 41(1):233–243. https://doi.org/10.1002/pc.25364

    Article  CAS  Google Scholar 

  57. Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O (2015) Thermally conductive graphene-polymer composites: size, percolation, and synergy effects. Chem Mater 27(6):2100–2106. https://doi.org/10.1021/cm504550e

    Article  CAS  Google Scholar 

  58. Kargar F et al (2018) Thermal percolation threshold and thermal properties of composites with high loading of graphene and boron nitride fillers. ACS Appl Mater Interfaces 10(43):37555–37565. https://doi.org/10.1021/acsami.8b16616

    Article  CAS  PubMed  Google Scholar 

  59. Song SH et al (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25(5):732–737. https://doi.org/10.1002/adma.201202736

    Article  CAS  PubMed  Google Scholar 

  60. Subodh G, Manjusha MV, Philip J, Sebastian MT (2008) Thermal properties of polytetrafluoroethylene/Sr2 Ce2 Ti5 O16 polymer/ceramic composites. J Appl Polym Sci 108(3):1716–1721. https://doi.org/10.1002/app.27606

    Article  CAS  Google Scholar 

  61. Xu Y, Ray G, Abdel-Magid B (2006) Thermal behavior of single-walled carbon nanotube polymer–matrix composites. Compos Part A Appl Sci Manuf 37(1):114–121. https://doi.org/10.1016/j.compositesa.2005.04.009

    Article  CAS  Google Scholar 

  62. Maity N, Mandal A, Nandi AK (2016) Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly(vinylidene fluoride) matrix yielding superior mechanical and electronic properties. Polymer (Guildf) 88:79–93. https://doi.org/10.1016/j.polymer.2016.02.028

    Article  CAS  Google Scholar 

  63. Bagotia N, Mohite H, Tanaliya N, Sharma DK (2018) A comparative study of electrical, EMI shielding and thermal properties of graphene and multiwalled carbon nanotube filled polystyrene nanocomposites. Polym Compos 39(S2):E1041. https://doi.org/10.1002/pc.24465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Centre for Research and Development within the Lider XI Programme (LIDER/11/0031/L-11/NCBR/2020), and partially by National Science Centre, Poland under grant OPUS no 2018/31/B/ST3/00279.

Funding

National Centre for Research and Development within the Lider XI Programme (LIDER/11/0031/L-11/NCBR/2020). National Science Centre, Poland under grant OPUS no 2018/31/B/ST3/00279.

Author information

Authors and Affiliations

Authors

Contributions

KF: sample preparation, visualization, investigation, and analysis: Raman spectroscopy, resistivity, thermal conductivity, EMI shielding; writing—original draft. PM: investigation—TGA. TG: investigation and analysis reviewing—DSC. JS: investigation—SEM. KRS: investigation and analysis—modified five contact van der Pauw measurements. PAZ: investigation and analysis—modified five contact van der Pauw measurements. AŁ: conceptualization; methodology; assistance in visualization; funding acquisition; project administration; assistance in analysis: electrical and thermal conductivity; writing—original draft (partially); writing—Review & Editing.

Corresponding author

Correspondence to Anna Łapińska.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest and no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1540 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filak, K., Sitek, J., Michalski, P. et al. Fluorinated ethylene propylene (FEP)/graphene nanoplatelet (GNP) nanocomposites as outstanding EMI shielding and heat dissipation material. J Mater Sci 59, 2924–2939 (2024). https://doi.org/10.1007/s10853-024-09365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09365-2

Navigation