Skip to main content
Log in

A Low-Temperature Firing and Low-Loss SrBi2TeO7 Microwave Dielectric Ceramic for LTCC Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural characteristics and microwave dielectric properties of SrBi2TeO7 ceramics intended for low-temperature co-fired ceramic (LTCC) applications were investigated. Comprehensive analyses were conducted using x-ray diffraction, structural refinement, transmission electron microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy. The findings demonstrated that SrBi2TeO7 ceramics possess a pure cubic structure. Scanning electron microscopy characterizes the grain microstructure, revealing a relative density of 95.5% for SrBi2TeO7 ceramic. Optimal microwave dielectric properties were achieved for SrBi2TeO7 ceramics calcined at 765°C, displaying a relative permittivity (εr) of 24.96, a Q × f value of 25,898 GHz (f = 6.6 GHz), and a temperature coefficient of resonant frequency (τf) of –80.7 ppm/°C. The combination of low sintering temperature and minimal dielectric loss renders these ceramics advantageous for utilization in LTCC materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Chen, B. Zhao, N. Chen, J. Cheng, M. Dang, F. Wang, X. Xu, and H. Wang, Low temperature fired CaF2 -based microwave dielectric ceramics with enhanced microwave properties. J. Eur. Ceram. Soc. 42, 4969 (2022).

    Article  CAS  Google Scholar 

  2. Y. Li, M. Zheng, M. Zhu, and Y. Hou, Microwave dielectric properties and low-temperature sintering mechanism in (Ca, Bi) (Mo, V)O4 ceramics. J. Alloy. Compd. 889, 161644 (2021).

    Article  Google Scholar 

  3. D. Zhou, H. Wang, X. Yao, L.X. Pang, and Y.H. Chen, Sintering behavior, phase evolution and microwave dielectric properties of Bi{Sb1−x(Nb0.992V0.008)x}O4 ceramics. Mater. Chem. Phys. 113, 265 (2009).

    Article  CAS  Google Scholar 

  4. S. Liu, H. Li, R. Xiang, P. Zhang, X. Chen, Q. Wen, and H. Hu, Effect of substituting Al3+ for Ti4+ on the microwave dielectric performance of Mg2Ti1-xAl4/3xO4 (0.01 ≤ x ≤ 0.09) ceramics. Ceram. Int. 47, 33064 (2021).

    Article  CAS  Google Scholar 

  5. P. Zhang, H. Li, X. Chen, R. Xiang, H.L. Hu, and C. Li, Crystal structural and microwave dielectric properties of Ba4B’Nb3O12 (B′ = Yb, Tm, Er, Y, Ho, Dy, Gd) ceramics. Ceram. Int. 47, 12199 (2021).

    Article  CAS  Google Scholar 

  6. Q. Zhang, H. Su, F. Huang, X. Wu, Y. Li, and X. Tang, Effect of B-site ion substitution on chemical bond characteristics and microwave dielectric properties of ZnWO4 ceramics. J. Eur. Ceram. Soc. 41, 6502 (2021).

    Article  CAS  Google Scholar 

  7. Z. Fang, L.X. Pang, D. Zhou, X.L. Wang, S. Ren, and W.G. Liu, Low-loss and temperature stable (1–x)Ba3P2O8-xMg2B2O5 composite ceramics with low sintering temperature. J. Eur. Ceram. Soc. 43, 1972 (2023).

    Article  CAS  Google Scholar 

  8. S.Z. Hao, D. Zhou, L.X. Pang, M.Z. Dang, S.K. Sun, T. Zhou, S. Trukhanov, A. Trukhanov, A.S. Bezerra Sombra, Q. Li, X.Q. Zhang, S. Xia, and M.A. Darwish, Ultra-low temperature co-fired ceramics with adjustable microwave dielectric properties in the Na2O–Bi2O3–MoO3 ternary system: a comprehensive study. J. Mater. Chem. C. 10, 2008 (2022).

    Article  CAS  Google Scholar 

  9. T. Kikuchi, T. Hatano, and H. Sakai, Synthesis of new compounds of the pseudo-ternary system SrO-Bi2O3-TeO2 in air. J. Mater. Sci. 25, 1285 (1990).

    Article  CAS  Google Scholar 

  10. Z. Gao, N. Xue, J.H. Jeong, and R. Yu, SrBi2TeO7:Eu3+: a novel blue-light excitable red-emitting phosphor for solid-state lighting. Mater. Res. Bull. 95, 497 (2017).

    Article  CAS  Google Scholar 

  11. D. Wang, L. Li, M. Du, and Y. Zhan, A low-sintering temperature microwave dielectric ceramic for 5G LTCC applications with ultralow loss. Ceram. Int. 47, 28675 (2021).

    Article  CAS  Google Scholar 

  12. J. Xi, F. Shang, F. Liu, J. Xu, and G. Chen, A facile preparation of temperature-stable borate ultra-low permittivity microwave ceramics for LTCC applications. Ceram. Int. 46, 19650 (2020).

    Article  CAS  Google Scholar 

  13. Q. Zhang, H. Su, X. Tang, Y. Li, R. Peng, X. Jing, and Y. Jing, Effects of Cu2+ substitution on bond characteristics, Raman spectra, and microwave dielectric properties of Li2Mg0.6Zn0.4SiO4 ceramics. J. Eur. Ceram. Soc. 41, 3432 (2021).

    Article  CAS  Google Scholar 

  14. X. Zhang, Z. Fang, Y. Jiang, M. Wang, S. Gee, L. Zhou, H. Yang, F. Si, P. Zhao, Z. Xiong, S. Zhang, and B. Tang, Microwave dielectric properties of a low firing and temperature stable lithium magnesium tungstate (Li4MgWO6) ceramic with a rock-salt variant structure. J. Eur. Ceram. Soc. 41, 171 (2021).

    Article  Google Scholar 

  15. G. Subodh and M.T. Sebastian, Microwave dielectric properties of Sr2Ce2Ti5O16 ceramics. Mat. Sci. Eng. B 136, 50 (2007).

    Article  CAS  Google Scholar 

  16. C. Pei, C. Hou, Y. Li, G. Yao, Z. Ren, P. Liu, and H. Zhang, A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics. J. Alloy. Compd. 792, 46 (2019).

    Article  CAS  Google Scholar 

  17. J. Li, Y. Tang, Z. Zhang, W. Fang, L. Ao, A. Yang, L. Liu, and L. Fang, Two novel garnet Sr3B2Ge3O12 (B = Yb, Ho) microwave dielectric ceramics with low permittivity and high Q. J. Eur. Ceram. Soc. 41, 1317 (2021).

    Article  CAS  Google Scholar 

  18. G. Yao, J. Yan, J. Tan, C. Pei, P. Liu, H. Zhang, and D. Wang, Structure, chemical bond and microwave dielectric characteristics of novel Li3Mg4NbO8 ceramics. J. Eur. Ceram. Soc. 41, 6490 (2021).

    Article  CAS  Google Scholar 

  19. J. Ma, J. Chen, Y. Tang, J. Li, W. Fang, Y. Dai, and L. Fang, Chemical bond and microwave dielectric properties of two novel low-εr AGa4O7 (A = Ca, Sr) ceramics. J. Eur. Ceram. Soc. 42, 478 (2022).

    Article  CAS  Google Scholar 

  20. J. Lv, Z. Cao, Y. Wang, F. Shi, and J. Wang, Crystal structures and microwave dielectric properties of Sr2MgWO6 ceramics at different sintering temperatures. J. Materiomics 8, 79 (2022).

    Article  Google Scholar 

  21. B. Liu and K.X. Song, Vibrational spectroscopy and microwave dielectric properties of two novel Ca3Ln2W2O12 (Ln = La, Sm) tungstate ceramics. Mater. Res. Bull. 133, 111022 (2021).

    Article  CAS  Google Scholar 

  22. M. Yu, Y. Tang, J. Li, W. Fang, L. Duan, and L. Fang, Microwave dielectric properties and chemical compatibility with alumina electrode of two novel ultra-low temperature firing ATeMoO6 (A = Mg, Zn) ceramics. Ceram. Int. 46, 25619 (2020).

    Article  CAS  Google Scholar 

  23. H. Zhou, K. Wang, W. Sun, X. Chen, and H. Ruan, Phase composition, sintering behavior and microwave dielectric properties of M2BiLi2V3O12 (M = Zn, Ca) low temperature co-fired ceramics. Mater. Lett. 217, 20 (2018).

    Article  CAS  Google Scholar 

  24. H.D. Xie, C. Chen, H.H. Xi, R. Tian, and X.C. Wang, Synthesis, low temperature co-firing, and microwave dielectric properties of two ceramics BiM2VO6 (M = Cu, Ca). Ceram. Int. 42, 989 (2016).

    Article  CAS  Google Scholar 

  25. G. Schileo, A. Dias, R.L. Moreira, T.J. Jackson, P.A. Smith, K.T.S. Chung, and A. Feteira, Structure and microwave dielectric properties of low firing Bi2Te2W3O16 ceramics. J. Am. Ceram. Soc. 97, 1096 (2014).

    Article  CAS  Google Scholar 

  26. X.H. Ma, S.H. Kweon, S. Nahm, C.Y. Kang, S.J. Yoon, Y.S. Kim, and W.S. Yoon, Microstructural and microwave dielectric properties of Bi12GeO20 and Bi2O3-deficient Bi12GeO20 ceramics. J. Am. Ceram. Soc. 99, 2361 (2016).

    Article  CAS  Google Scholar 

  27. S.H. Yoon, D.W. Kim, S.Y. Cho, and K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051 (2006).

    Article  CAS  Google Scholar 

  28. B.J. Jeong, M.R. Joung, J.S. Kim, S. Nahm, J.W. Choi, and S.J. Hwang, Sintering mechanism and microwave dielectric properties of Bi12TiO20 ceramics. J. Am. Ceram. Soc. 96, 3742 (2013).

    Article  CAS  Google Scholar 

  29. P. Zhang, M. Hao, M. Xiao, and Z. Zheng, Crystal structure and microwave dielectric properties of novel BiMg2MO6 (M = P, V) ceramics with low sintering temperature. J. Materiomics 7, 1344 (2021).

    Article  Google Scholar 

  30. M.R. Joung, B.J. Jeong, J.S. Kim, S.R. Woo, H.M. Park, and S. Nahm, Sintering process and microwave dielectric properties of Bi8TiO14 ceramics. J. Am. Ceram. Soc. 97, 2491 (2014).

    Article  CAS  Google Scholar 

  31. P. Zhang, M. Hao, X. Mao, K. Sun, and M. Xiao, A novel low sintering temperature scheelite-structured CaBiVMoO8 microwave dielectric ceramics. J. Alloy. Compd. 840, 155187 (2020).

    Article  CAS  Google Scholar 

  32. H.H. Guo, D. Zhou, W.F. Liu, L.X. Pang, D.W. Wang, J.Z. Su, and Z.M. Qi, Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics. J. Am. Ceram. Soc. 103, 423 (2019).

    Article  Google Scholar 

  33. C.L. Huang and M.H. Weng, Low-fire BiTaO4 dielectric ceramics for microwave applications. Mater. Lett. 43, 32 (2000).

    Article  CAS  Google Scholar 

  34. L. Ao, J. Li, Y. Tang, W. Fang, L. Liu, Y. Sun, and L. Fang, Structure, far-infrared reflectance spectra, and microwave dielectric properties of Ba2MGa11O20 (M = Bi, La) ceramics. Ceram. Int. 47, 11899 (2021).

    Article  CAS  Google Scholar 

  35. K. Du, C.Z. Yin, Y.B. Guo, C. Zhang, X.C. Wang, W.Z. Lu, and W. Lei, Phase transition, infrared spectra, and microwave dielectric properties of temperature-stable CaSnSi1-xGexO5 ceramics. Ceram. Int. 47, 24781 (2021).

    Article  CAS  Google Scholar 

  36. N.E. Brese and M. O’Keeffe, Bond-valence parameters for solids. Acta Crystallogr. Sect. B Struct. Sci. 47, 192 (1991).

    Article  Google Scholar 

  37. S.C. Lal, V. Lalan, and S. Ganesanpotti, Structural characterization of B-site ordered Ba2Ln2/3TeO6 (Ln = La, Pr, Nd, Sm, and Eu) double perovskites and probing its luminescence as Eu3+phosphor hosts. Inorg. Chem. 57, 6226 (2018).

    Article  CAS  Google Scholar 

  38. Y.M. Jana, P. Halder, A.A. Biswas, R. Jana, and G.D. Mukherjee, FT-IR and Raman vibrational spectroscopic studies of R2FeSbO7 (R3+ = Y, Dy, Gd, Bi) pyrochlores. Vib. Spectrosc. 84, 74 (2016).

    Article  CAS  Google Scholar 

  39. Y. Tang, H. Li, J. Li, H. Xiang, and L. Fang, Microwave dielectric properties of Li3A3Te2O12 (A = Y, Yb) garnets for low temperature cofired ceramic technologies. J. Eur. Ceram. Soc. 42, 2248 (2022).

    Article  CAS  Google Scholar 

  40. F. Shi and H. Dong, Correlation of crystal structure, dielectric properties and lattice vibration spectra of (Ba1-xSrx)(Zn1/3Nb2/3)O3 solid solutions. Dalton. Trans. 40, 6659 (2011).

    Article  CAS  Google Scholar 

  41. S. Komai, M. Hirano, and N. Ohtsu, Spectral analysis of Sr 3d XPS spectrum in Sr-containing hydroxyapatite. Surf. Interface Anal. 52, 823 (2020).

    Article  CAS  Google Scholar 

  42. E.P. Arévalo-López, P. Romero-Moreno, J.L. Rosas-Huerta, L. Huerta, C. Minaud, M.L. Marquina, R. Escamilla, and M. Romero, Effect of Fe on Bi2Te3: structure, magnetic properties, and XPS valence band. J. Alloy. Compd. 899, 163297 (2022).

    Article  Google Scholar 

  43. A. Mekki, G.D. Khattak, and L.E. Wenger, XPS and magnetic studies of vanadium tellurite glassses. J. Electron. Spectrosc. 175, 21 (2009).

    Article  CAS  Google Scholar 

  44. A. Waehayee, T. Eknapakul, N. Chanlek, T. Kongnok, S. Rattanasuporn, H. Nakajima, W. Meevasana, and T. Siritanon, Electrical properties of (Cs1−xAx)Al0.33Te1.67O6 (A = K and Rb) mixed valence pyrochlores. J. Alloy. Compd. 718, 215 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the graduate scientific research innovation project of Shaoyang University (Grant No. CX2022SY035) and the National Natural Science Foundation of China (Grant No. 52102123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liang, D., Zhang, X. et al. A Low-Temperature Firing and Low-Loss SrBi2TeO7 Microwave Dielectric Ceramic for LTCC Applications. J. Electron. Mater. 52, 7438–7446 (2023). https://doi.org/10.1007/s11664-023-10664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10664-8

Keywords

Navigation