Skip to main content

Advertisement

Log in

Synthesis, Oxygen Evolution Reaction, and Dye Degradation Application of Tb2Se3 and InTbSe3 Nanostructures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effective fabrication of unconventional terbium selenide nanostructures was accomplished using a straightforward, quick, and environmentally benign process. The modification of Tb2Se3 nanostructures was achieved through indium incorporation. X-ray diffraction analysis revealed the hexagonal symmetry of the synthesized InTbSe3 nanostructures. Scanning electron microscopy images showed a nanosheet-like architecture for Tb2Se3 and InTbSe3. The prepared Tb2Se3 and InTbSe3 nanostructures were also tested for their electrocatalytic oxygen evolution reaction (OER) kinetics and electrocatalytic water-splitting properties. The In-modified Tb2Se3 nanostructures were superposed on the pristine material with an overpotential of 280 mV to execute the OER in an alkaline medium of 1 M KOH. It was found that InTbSe3 has excellent promise for hydrogen evolution reaction, with a lower Tafel value of 28 mV/dec and a higher current density than the pristine Tb2Se3. The optical bandgap for Tb2Se3 and InTbSe3 was calculated to be 1.5 eV and 1.71 eV, respectively. As a photocatalyst, InTbSe3 provides better degradation of methylene blue (98%) than Congo red dye (91%) under visible light. The UV-Vis spectroscopic results revealed the complete photocatalytic degradation of Congo red and methylene blue dye in visible light under optimized conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Acar and I. Dincer, The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int. J. Hydrog. Energy. 45, 3396–3406 (2020).

    Article  CAS  Google Scholar 

  2. B.N. Rath, V. Akram, D.P. Bal, and M.K. Mahalik, Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights. Energy Policy 127, 186–199 (2019).

    Article  Google Scholar 

  3. C.J. Gagliardi, A.K. Vannucci, J.J. Concepcion, Z. Chen, and T.J. Meyer, The role of proton coupled electron transfer in water oxidation. Energy Environ. Sci. 5, 7704–7717 (2012).

    Article  CAS  Google Scholar 

  4. M. Sadaqat, L. Nisar, F. Hussain, M.N. Ashiq, A. Shah, M.F. Ehsan, M. Najam-Ul-Haq, and K.S. Joya, Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J. Mater. Chem. 7, 26410–26420 (2019).

    Article  CAS  Google Scholar 

  5. G. Li, L. Anderson, Y. Chen, M. Pan, and P.Y.A. Chuang, New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustain. Energy Fuels. 2, 237–251 (2018).

    Article  CAS  Google Scholar 

  6. A.M. Hengne, A.K. Samal, L.R. Enakonda, M. Harb, L.E. Gevers, D.H. Anjum, M.N. Hedhili, Y. Saih, K.W. Huang, and J.M. Basset, Ni-Sn-supported ZrO2 catalysts modified by indium for selective CO2 hydrogenation to methanol. ACS Omega 3, 3688–3701 (2018).

    Article  CAS  Google Scholar 

  7. A. Saddiqa, L. Nisar, S.R. Gilani, and K.S. Joya, Surface-assembled non-noble metal nanoscale Ni-colloidal thin-films as efficient electrocatalysts for water oxidation. RSC Adv. 9, 37274–37286 (2019).

    Article  Google Scholar 

  8. I. Sheebha, V. Venugopal, J. James, V. Maheskumar, A. Sakunthala, and B. Vidhya, Comparative studies on hierarchical flower like Cu2XSnS4 [X= Zn, Ni, Mn & Co] quaternary semiconductor for electrocatalytic and photocatalytic applications. Int. J. Hydrog. Energy. 45, 8139–8150 (2020).

    Article  CAS  Google Scholar 

  9. G.W. Shim, W. Hong, S.Y. Yang, and S.Y. Choi, Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. J. Mater. Chem. 5, 14950–14968 (2017).

    Article  CAS  Google Scholar 

  10. R. Zazpe, R. Krumpolec, H. Sopha, J. Rodriguez-Pereira, J. Charvot, L.K. Hromádko, E. Kolíbalová, J. Michalička, D. Pavliňák, and M. Motola, Atomic Layer deposition of MoSe2 nanosheets on TiO2 nanotube arrays for photocatalytic dye degradation and electrocatalytic hydrogen evolution. ACS Appl. Nano Mater. 3, 12034–12045 (2020).

    Article  CAS  Google Scholar 

  11. J. Leduc, Y. Goenuellue, A. Raauf, T. Fischer, and S. Mathur, Rare-earth-containing materials for photoelectrochemical water splitting applications. Semicond. Semimet. 97, 185–219 (2017).

    Article  CAS  Google Scholar 

  12. L. Lan, X. Li, C. Ding, S. Chen, H. Su, B. Huang, B. Chen, H. Zhou, and J. Peng, The effect of the charge transfer transition of the tetravalent terbium on the photostability of oxide thin-film transistors. Adv. Electron. Mater. 10, 2200187 (2022).

    Article  Google Scholar 

  13. M.B.M. de Campos, M.A. Cebim, M.R. Meirelles, E.C. Paris, and A.H. Rosa, Influence of terbium (III) ions on the photocatalytic activity of TiO2 and CeO2 for the degradation of methylene blue in industrial effluents. Environ. Sci. Pollut. Res. 28, 27147–27161 (2021).

    Article  Google Scholar 

  14. S.S. Kumar, N. Chidhambaram, K.D.A. Kumar, R.R. Isaac, A.A. Abdeltawab, S.Z. Mohammady, M. Ubaidullah, and S.F. Shaik, Impact of terbium inclusion on the photodetection performance of ZnO thin films. Semicond. Sci. Technol. 36, 065022 (2021).

    Article  CAS  Google Scholar 

  15. G. Pathmanaban, M. Hossain, R. Macadangdang, V. Krishnan, S. Shajahan, M.A. Haija, R. Marnadu, F.A. Alharthi, G. Sreedevi, and B. Palanivel, Effect of terbium doping in bismuth ferrite nanoparticles for the degradation of organic pollutant under sunlight irradiation. J. Mater. Sci. Mater. Electron. 33, 9324–9333 (2022).

    Article  CAS  Google Scholar 

  16. K. Stangeland, F. Chamssine, W. Fu, Z. Huang, X. Duan, and Z. Yu, CO2 hydrogenation to methanol over partially embedded Cu within Zn-Al oxide and the effect of indium. J. CO2 Util. 50, 101609 (2021).

    Article  CAS  Google Scholar 

  17. J. Zhang, D. He, H. Jiang, X. Xia, Y. Gao, and Z. Huang, High thermoelectric performance achieved in bulk selenium with nanostructural building blocks. ACS Appl. Electron. Mater. 3, 3824–3834 (2021).

    Article  CAS  Google Scholar 

  18. Y. Gorlin, B. Lassalle-Kaiser, J.D. Benck, S. Gul, S.M. Webb, V.K. Yachandra, J. Yano, and T.F. Jaramillo, In situ x-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 135, 8525–8534 (2013).

    Article  CAS  Google Scholar 

  19. B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao, and J. Jiang, Interface engineering: the Ni (OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37, 74–80 (2017).

    Article  CAS  Google Scholar 

  20. J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, and X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. 128, 6814–6819 (2016).

    Article  Google Scholar 

  21. X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo, and S. Yang, Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 137, 11900–11903 (2015).

    Article  CAS  Google Scholar 

  22. A. Hastir, N. Kohli, and R.C. Singh, Temperature dependent selective and sensitive terbium doped ZnO nanostructures. Sens. Actuators B Chem. 231, 110–119 (2016).

    Article  CAS  Google Scholar 

  23. S. Mani, S. Ramaraj, S.M. Chen, B. Dinesh, and T.W. Chen, Two-dimensional metal chalcogenides analogous NiSe2 nanosheets and its efficient electrocatalytic performance towards glucose sensing. J. Colloid Interface Sci. 507, 378–385 (2017).

    Article  CAS  Google Scholar 

  24. M. Shakeel, M. Arif, G. Yasin, L. Baoshan, and D.K. Hashmat, Layered by layered Ni-Mn-LDH/g-CuN4 nanohybrid for multi-purpose photo/electrocatalysis: morphology controlled strategy for effective charge carriers separation. Appl. Catal. B. 242, 485–498 (2019).

    Article  CAS  Google Scholar 

  25. N. Ghobadi, P. Sohrabi, and H.R.J.C.P. Hatami, Correlation between the photocatalytic activity of CdSe nanostructured thin films with optical band gap and Urbach energy. Chem. Phys. 538, 110911 (2020).

    Article  CAS  Google Scholar 

  26. S. Khan, A. Khan, N. Ali, S. Ahmad, W. Ahmad, S. Malik, N. Ali, H. Khan, S. Shah, and M.J.E.T. Bilal, Degradation of Congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts. Environ. Technol. Innov. 22, 101402 (2021).

    Article  CAS  Google Scholar 

  27. S. Sonia, P.S. Kumar, D. Mangalaraj, N. Ponpandian, and C.J.A.S.S. Viswanathan, Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method. Appl. Surf. Sci. 283, 802–807 (2013).

    Article  CAS  Google Scholar 

  28. N. Yasmin, A. Liaqat, G. Ali, A. Kalsoom, M. Safdar, and M. Mirza, Synthesis and characterization of silver-indium and antimony selenide: role in photocatalytic degradation of dyes. Heliyon. 8, 11088 (2022).

    Article  Google Scholar 

  29. D. Patidar, A. Yadav, D.R. Paul, A. Sharma, and S.P. Nehra, Nanostructures, Nanohybrids cadmium selenide-reduced graphene oxide for improving photo-degradation of methylene blue. Physica E Low Dimens. Syst. Nanostruct. 114, 113560 (2019).

    Article  CAS  Google Scholar 

  30. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I.K. Punithavathy, and J.P. Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by HEC, Pakistan, under project NRPU 20-11749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Safdar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

No data was used for the research described in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, S., Awais, M. & Safdar, M. Synthesis, Oxygen Evolution Reaction, and Dye Degradation Application of Tb2Se3 and InTbSe3 Nanostructures. J. Electron. Mater. 52, 7393–7405 (2023). https://doi.org/10.1007/s11664-023-10659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10659-5

Keywords

Navigation