Skip to main content

Advertisement

Log in

Enhanced Piezoelectric Properties of Poly(Vinylidene Fluoride)/Lead Zirconate Titanate (PVDF/PZT) Fiber Films Fabricated by Electrospinning

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Flexible wearable sensing devices are in great demand for self-powered systems. In this study, we fabricated fiber films of poly(vinylidene fluoride) (PVDF) matrix embedded with modified lead zirconate titanate nanoparticles (PZT NPs) using the electrospinning process. Each fiber film was cut into small pieces of 2 × 2 cm2, and pairs of pieces were pressed with a hot-pressing method. Modified PZT NPs with a high piezoelectric coefficient were embedded in PVDF fibers as a piezoelectric-reinforcing phase, which promoted the formation of the polar β phase in PVDF. The embedded PZT NPs affected the distribution of the polarized electric field and formed a local electric field between two PZT NPs, which promoted the polarization of PVDF, thereby enhancing the piezoelectric properties of PVDF/PZT NPs fiber films. The piezoelectric coefficient (d33) of the PVDF/PZT NPs fiber films embedding 4 wt.% PZT NPs showed the most significant enhancement, from 12 pC/N for neat PVDF to 21 pC/N, which is an approximately 75% improvement. The results of this work demonstrate the great potential application of piezoelectric composite fiber films in flexible wearable sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Dang, J. Yuan, S. Yao, and R. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6344 (2013).

    Article  Google Scholar 

  2. R. Ortiz, A. Facchetti, and T. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205 (2010).

    Article  CAS  Google Scholar 

  3. Y. Wang, X. Zhou, Q. Chen, B. Chu, and Q. Zhang, Recent development of high energy density polymers for dielectric capacitors. IEEE Trans. Dielect. Electr. Insul. 17, 1036 (2010).

    Article  CAS  Google Scholar 

  4. J. Liang, H. Zeng, L. Qiao, H. Jiang, Q. Ye, Z. Wang, B. Liu, and Z. Fan, 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing. ACS Appl. Mater. Interfaces 14, 30507 (2022).

    Article  CAS  Google Scholar 

  5. A. Pal, A. Sasmal, B. Manoj, D. Rao, A. Haldar, and S. Sen, Enhancement in energy storage and piezoelectric performance of three phase (PZT/MWCNT/PVDF) composite. Mater. Chem. Phys. 244, 122639 (2020).

    Article  CAS  Google Scholar 

  6. B. Chai, K. Shi, Y. Wang, Y. Liu, F. Liu, P. Jiang, G. Sheng, S. Wang, P. Xu, X. Xu, and X. Huang, Modulus-modulated all-organic core-shell nanofiber with remarkable piezoelectricity for energy harvesting and condition monitoring. Nano Lett. 23(5), 1810 (2023).

    Article  CAS  Google Scholar 

  7. A. Yin, J. Wang, S. Hu, M. Sun, B. Sun, M. Dong, T. Zhang, Z. Feng, H. Zhang, B. Shi, C. Zhang, and H. Liu, High performance waterproof-breathable fully flexible tactile sensor based on piezotronics coupled OFET. Nano Energy 106, 108034 (2023).

    Article  CAS  Google Scholar 

  8. S. Sharafkhani, and M. Kokabi, Ultrathin-shell PVDF/CNT nanocomposite aligned hollow fibers as a sensor/actuator single element. Compos. Sci. Technol. 200, 108425 (2020).

    Article  CAS  Google Scholar 

  9. Q. Su, C. Liu, T. Xue, and Q. Zou, Sensitivity-photo-patternable ionic pressure sensor array with a wearable measurement unit. ACS Appl. Mater. Interfaces 14(29), 33641 (2022).

    Article  CAS  Google Scholar 

  10. S. Shi, Y. Zhai, Y. Zhang, H. Wang, Z. Li, X. Fan, Y. Zhang, J. Liu, P. Li, J. Zhai, and Z. Pan, Ultra-sensitive flexible piezoelectric energy harvesters inspired by pine branches for detection. Nano Energy 99, 107422 (2022).

    Article  CAS  Google Scholar 

  11. S. Kang, S.H. Kim, H.B. Lee, S. Mhin, J.H. Ryu, Y.W. Kim, J.L. Jones, Y. Son, N.K. Lee, K. Lee, Y. Kim, K.H. Jung, H. Han, S.H. Park, and K.M. Kim, High-power energy harvesting and imperceptible pulse sensing through peapod-inspired hierarchically designed piezoelectric nanofibers. Nano Energy 99, 107386 (2022).

    Article  CAS  Google Scholar 

  12. X. Yuan, A. Yan, Z. Lai, Z. Liu, Z. Yu, Z. Li, Y. Cao, and S. Dong, A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 98, 107340 (2022).

    Article  CAS  Google Scholar 

  13. Y. Su, W. Li, X. Cheng, Y. Zhou, S. Yang, X. Zhang, C. Chen, T. Yang, H. Pan, G. Xie, G. Chen, X. Zhao, X. Xiao, B. Li, H. Tai, Y. Jiang, L.-Q. Chen, F. Li, and J. Chen, High-performance piezoelectric composites via beta phase programming. Nat. Commun. 13(1), 4867 (2022).

    Article  CAS  Google Scholar 

  14. S. Garain, S. Jana, T.K. Sinha, and D. Mandal, Design of in situ poled Ce3+-doped electrospun PVDF/Graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater. Interfaces 8(7), 4532 (2016).

    Article  CAS  Google Scholar 

  15. S.M. Hosseini and A.A. Yousefi, Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites. Org. Electron. 50, 121 (2017).

    Article  CAS  Google Scholar 

  16. H. Lu, J. Zhang, L. Yang, Y. Zhang, Y. Wu, and H. Zheng, Enhanced output performance of piezoelectric nanogenerators by Tb-Modified (BaCa)(ZrTi)O3 and 3D core/shell structure design with PVDF composite spinning for microenergy harvesting. ACS Appl. Mater. Interfaces 14(10), 12243 (2022).

    Article  CAS  Google Scholar 

  17. W. Xu, J. Guo, H. Wen, X. Meng, H.H.J. Yuan, J. Gao, D. Liu, Q. Ran, Y. Wang, J. Duan, Q. Tang, and X. Yang, Laminated triboelectric acoustic energy harvester based on electrospun nanofiber towards real-time noise decibel monitoring. Nano Energy 99, 107348 (2022).

    Article  CAS  Google Scholar 

  18. J.F. Jiang, X. Zhou, J. Lv, J. Chen, J. Chen, H. Kongcharoen, Y. Zhang, and P.S. Lee, Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting. Adv. Mater. 34(17), 2200042 (2022).

    Article  CAS  Google Scholar 

  19. S. Yu, Y. Ling, S. Sun, Y. Wang, Z. Yu, J. Zheng, G. Liu, Y. Fu, D. Chen, Y. Liu, and H. Zhou, Flexible self-charging lithium battery for storing low-frequency mechanical energy. Nano Energy 94, 106911 (2022).

    Article  CAS  Google Scholar 

  20. X. Du, Z. Zhou, Z. Zhang, L. Yao, Q. Zhang, and H. Yang, Porous, multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators. J. Adv. Ceram. 11(2), 331 (2022).

    Article  CAS  Google Scholar 

  21. X. Zhang, J. Jiang, Z. Shen, Z. Dan, M. Li, Y. Lin, C.-W. Nan, L. Chen, and Y. Shen, Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 30(16), 1707269 (2018).

    Article  Google Scholar 

  22. C. Zhang, H. Yu, H. Sun, and Q. Zhu, Property enhancement in flexible Poly(vinylidene fluoride)-based piezoelectric films with large-area preparation. J. Appl. Polym. Sci. 139(9), 51698 (2022).

    Article  CAS  Google Scholar 

  23. C. Zhang, W. Wei, H. Sun, and Q. Zhu, Performance enhancements in Poly(vinylidene fluoride)-based piezoelectric films prepared by the extrusion-casting process. J. Mater. Sci. Mater. El. 32(17), 21837 (2021).

    Article  CAS  Google Scholar 

  24. C. Zhang, H. Sun, and Q. Zhu, Study on flexible large-area Poly(vinylidene fluoride)-based piezoelectric films prepared by extrusion-casting process for sensors and microactuators. Mater. Chem. Phys. 275, 125221 (2022).

    Article  CAS  Google Scholar 

  25. Z. Pan, L. Yao, J. Zhai, K. Yang, B. Shen, and H. Wang, Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates. ACS Sustain. Chem. Eng. 5(6), 4707 (2017).

    Article  CAS  Google Scholar 

  26. Z. Pan, L. Yao, J. Zhai, B. Shen, and H. Wang, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 147, 30 (2017).

    Article  CAS  Google Scholar 

  27. C. Zhang, H. Sun, and Q. Zhu, Preparation and property enhancement of Poly(Vinylidene Fluoride) (PVDF)/Lead zirconate Titanate (PZT) composite piezoelectric films. J. Electron. Mater. 50(11), 6426 (2021).

    Article  CAS  Google Scholar 

  28. G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan, X. He, T. Yang, L. Jin, X. Chu, H. Zhang, W. Yan, and W. Yang, Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 59, 574 (2019).

    Article  CAS  Google Scholar 

  29. Q. Wu, H. Guo, H. Sun, X. Liu, H. Sui, and F. Wang, Flexible piezoelectric energy harvesters with graphene oxide nanosheets and PZT-Incorporated P(VDF-TrFE) matrix for mechanical energy harvesting. Ceram. Int. 47(14), 19614 (2021).

    Article  CAS  Google Scholar 

  30. Z. Mirzazadeh, Z. Sherafat, and E. Bagherzadeh, Physical and mechanical properties of PVDF/KNN composite produced via hot compression molding. Ceram. Int. 47(5), 6211 (2021).

    Article  CAS  Google Scholar 

  31. L. Gu, J. Liu, N. Cui, Q. Xu, T. Du, L. Zhang, Z. Wang, C. Long, and Y. Qin, Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11(1), 1030 (2020).

    Article  CAS  Google Scholar 

  32. Q. Li, G. Zhang, X. Zhang, S. Jiang, Y. Zeng, and Q. Wang, Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater. 27(13), 2236 (2015).

    Article  CAS  Google Scholar 

  33. C. Zhang, C. Yuan, Q. Zhu, and H. Sun, Large-scale fabrication and performance improvement of polyvinylidene fluoride piezoelectric composite films. Ceram. Int. 49(16), 27255 (2023).

    Article  CAS  Google Scholar 

  34. Y. Ting, Suprapto, C.W. Chiu, and H. Gunawan, Characteristic analysis of biaxially stretched PVDF thin films. J. Appl. Polym. Sci. 135(36), 46677 (2018).

    Article  Google Scholar 

  35. B. Mohammadi, A.A. Yousefi, and S.M. Bellah, Effect of Tensile strain rate and elongation on crystalline structure and Piezoelectric properties of PVDF thin films. Polym. Test. 26(1), 42 (2007).

    Article  CAS  Google Scholar 

  36. S. Holmes, P. Wilson, and A. Verrall, PVDF: an electronically-active polymer for industry. Mater. Des. 4(6), 910 (1983).

    Article  Google Scholar 

  37. S. Bairagi, and S. Ali, Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter 16, 4876 (2020).

    Article  CAS  Google Scholar 

  38. C. Yuan, C. Zhang, S. Xiao, C. Yang, and N. Zhang, Multilayer nanocomposite films with enhanced piezoelectric properties doping PZT nanofibers. Ceram. Int. 49(17), 28474 (2023).

    Article  CAS  Google Scholar 

  39. J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, and G. Yang, Performance enhancements in Poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 56, 662 (2019).

    Article  CAS  Google Scholar 

  40. J. Pei, L. Yin, S. Zhong, and Z. Dang, Suppressing the loss of polymer-based dielectrics for high power energy storage. Adv. Mater. 35(3), 2203623 (2023).

    Article  CAS  Google Scholar 

  41. Z.M. Dang, L.Z. Fan, Y. Shen, and C.W. Nan, Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Mater. Sci. Eng. B Adv. 103(2), 140 (2003).

    Article  Google Scholar 

  42. Y. Xie, J. Wang, Y. Yu, W. Jiang, and Z. Zhang, Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride. Appl. Surf. Sci. 440, 1150 (2018).

    Article  CAS  Google Scholar 

  43. T. Furukaw, K. Fujino, and E. Fukada, Electromechanical properties in the composites of epoxy resin and PZT ceramics. Jpn. J. Appl. Phys. 15, 2119 (1976).

    Article  Google Scholar 

  44. N. Chamankar, R. Khajavi, A.A. Yousefi, A. Rashidi, and F. Golestanifard, A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceram. Int. 46(12), 19669 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, China (Grant Nos. U1806221, 51672198), the Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province, China (2018ZCQZB01, 2019ZCQZB03) and the Key Research & Design Program of Shandong Province (2019GGX102011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Zhang, C., Yang, C. et al. Enhanced Piezoelectric Properties of Poly(Vinylidene Fluoride)/Lead Zirconate Titanate (PVDF/PZT) Fiber Films Fabricated by Electrospinning. J. Electron. Mater. 52, 7193–7207 (2023). https://doi.org/10.1007/s11664-023-10631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10631-3

Keywords

Navigation