Skip to main content
Log in

Electroanalytical Study of SSeNPs–CGA–FTO Electrochemical Sensor Towards the Detection of H2O2

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A commercial graphene-amine (CGA) and synthesized selenium nanoparticle (SSeNP) nanocomposite coated on the surface of fluorine-doped tin oxide (SSeNPs–CGA–FTO) substrate was developed by spin coating for H2O2 detection. The CGA–FTO and SSeNPs–CGA–FTO electrochemical sensors were characterized using FESEM with EDAX analysis. FESEM analysis showed nanotube and fluffy morphology of the SSeNPs and CGA, respectively. The developed CGA–FTO and SSeNPs–CGA–FTO electrochemical sensors were used for the sensing of hydrogen peroxide by chronoamperometry (CA) in NaOH (0.1 N) electrolyte. The sensors showed a linear response range from 0.1 mM to 20 mM with sensitivity of 101.7 mA mM−1 cm−2 (R2 = 0.9931) and 137.9 mA mM−1 cm−2 (R2 =  0.9956). The CGA–FTO and SSeNPs–CGA–FTO showed a very low detection limit of 0.1 mM and 0.05 mM, respectively, with a detection response time of less than 1 s. The interference study of the SSeNPs–CGA–FTO-based sensors showed higher selectivity towards H2O2 with interfering agents as compared with CGA–FTO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Kumar, R.K. Gupta, R.K. Gundampati, D.K. Singh, S. Mohan, S.H. Hasan, and M. Malviya, Enhanced electron transfer mediated detection of hydrogen peroxide using a silver nanoparticle: reduced graphene oxide—polyaniline fabricated electrochemical sensor. RSC Adv. 8, 619 (2018).

    Google Scholar 

  2. Q. Wang, Y. Yun, and J. Zheng, Nonenzymatic hydrogen peroxide sensor based on a polyaniline-single walled carbon nanotubes composite in a room temperature ionic liquid. Microchim. Acta 167, 153 (2009).

    CAS  Google Scholar 

  3. M. Ma, Z. Minao, D. Zhang, X. Du, Y. Zhang, and C. Zhang, Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors. Biosens. Bioelectron. 64, 477 (2015).

    CAS  Google Scholar 

  4. S. Yang, X. Zhang, and H. Mi, Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid. J. Power Sources 175, 26 (2008).

    CAS  Google Scholar 

  5. Y. Wang and Z. Iqbal, Functionalization of carbon nanotubes with amines and enzymes. Chem. Phys. Lett. 402, 96 (2005).

    CAS  Google Scholar 

  6. K.C. Lin, C.Y. Yang, and S.M. Chen, Fabrication of a nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with platinum and silver hybrid composite. Int. J. Electrochem. Sci. 10, 3726 (2014).

    Google Scholar 

  7. C. Xu, Y. Liu, F. Su, A. Liu, and H. Qiu, Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosens. Bioelectron. 27, 160 (2011).

    CAS  Google Scholar 

  8. S. Liu, B. Yu, F. Li, and Y. Ji, Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2. Electrochim. Acta 141, 161 (2014).

    CAS  Google Scholar 

  9. N.S. Dumore and M. Mukhopadhyay, Sensitivity enhanced SeNPs-FTO electrochemical sensor for hydrogen peroxide detection. J. Electroanal. Chem. 878, 114544 (2020).

    CAS  Google Scholar 

  10. J. Wang and Y. Lin, Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Anal. Chem. 27, 619 (2008).

    Google Scholar 

  11. M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81, 5603 (2009).

    CAS  Google Scholar 

  12. C. Revathi, K. Rajavel, M. Saranya, and R.T.R. Kumar, MWCNT based non-enzymatic H2O2 sensor: influence of amine functionalization on the electrochemical H2O2 sensing. J. Electrochem. Soc. 163, B627 (2016).

    CAS  Google Scholar 

  13. T. Wang, L. Yang, B. Zhang, and J. Liu, Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B Biointerfaces 80, 94 (2010).

    CAS  Google Scholar 

  14. U. Luesakul, S. Komenek, S. Puthong, and N. Muangsin, Shape-controlled synthesis of cubic-like selenium nanoparticles via the self-assembly method. Carbohydr. Polym. 153, 435 (2016).

    CAS  Google Scholar 

  15. N.S. Dumore and M. Mukhopadhyay, Antioxidant properties of aqueous selenium nanoparticles (ASeNPs) and its catalysts activity for 1, 1-diphenyl-2-picrylhydrazyl ( DPPH ) reduction. J. Mol. Struct. 1205, 127637 (2020).

    CAS  Google Scholar 

  16. W. Chen, Y. Li, S. Yang, L. Yue, Q. Jiang, and W. Xia, Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydr. Polym. 132, 574 (2015).

    CAS  Google Scholar 

  17. X. Jia, Q. Liu, S. Zou, X. Xu, and L. Zhang, Construction of selenium nanoparticles /β-glucan composites for enhancement of the antitumor activity. Carbohydr. Polym. 117, 434 (2015).

    CAS  Google Scholar 

  18. K. Kalishwaralal, S. Jeyabharathi, K. Sundar, and A. Muthukumaran, A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif. Cells Nanomed. Biotechnol. 44, 471 (2014).

    Google Scholar 

  19. F. Lamberti, S. Agnoli, L. Brigo, G. Granozzi, M. Giomo, and N. Elvassore, Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting. ACS Appl. Mater. Interfaces 5, 12887 (2013).

    CAS  Google Scholar 

  20. C. Lv, W. Di, Z. Liu, K. Zheng, and W. Qin, Luminescent CePO4: Tb colloids for H2O2 and glucose sensing. Analyst 139, 4547 (2014).

    CAS  Google Scholar 

  21. Y. Liu, M. Wang, F. Zhao, and Z. Xu, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes-chitosan matrix. Biosens. Bioelectron. 21, 984 (2005).

    CAS  Google Scholar 

  22. H. Zhao and H. Ju, Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal. Biochem. 350, 138 (2006).

    CAS  Google Scholar 

  23. X. Luo, A.J. Killard, and M.R. Smyth, Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes. Electroanalysis 18, 1131 (2006).

    CAS  Google Scholar 

  24. N.S. Dumore and M. Mukhopadhyay, Electroanalytical performance of non-enzymatical electrochemical sensor based on PtNPs-SeNPs-SnO2NPs@BFTO nanocomposites for the detection of hydrogen peroxide. Electrocatalysis (2023). https://doi.org/10.1007/s12678-023-00828-9.

    Article  Google Scholar 

  25. M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, and J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855 (2010).

    CAS  Google Scholar 

  26. K.E. Toghill and R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246 (2010).

    CAS  Google Scholar 

  27. A. Ahmad, S. Ullah, A. Khan, W. Ahmad, A.U. Khan, U.A. Khan, A.U. Rahman, and Q. Yuan, Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices. Appl. Nanosci. (Switzerland) 10, 1243 (2020).

    CAS  Google Scholar 

  28. C. Liang, T. Zhai, W. Wang, J. Chen, W. Zhao, X. Lu, and Y. Tong, Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage. J. Mater. Chem. A Mater. 2, 7214 (2014).

    CAS  Google Scholar 

  29. T. Ramanathan, F.T. Fisher, R.S. Ruoff, and L.C. Brinson, Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 17, 1290 (2005).

    CAS  Google Scholar 

  30. H. Liu, A. Wang, Q. Sun, T. Wang, and H. Zeng, Cu nanoparticles/fluorine-doped tin oxide (FTO) nanocomposites for photocatalytic H2 evolution under visible light irradiation. Catalysts 7, 385 (2017).

    Google Scholar 

  31. Y. Huang, Y.E. Miao, J. Fu, S. Mo, C. Wei, and T. Liu, Perpendicularly oriented few-layer MoSe2 on SnO2 nanotubes for efficient hydrogen evolution reaction. J. Mater. Chem. A Mater. 3, 16263 (2015).

    CAS  Google Scholar 

  32. K. Wang, Q. Liu, X.Y. Wu, Q.M. Guan, and H.N. Li, Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta 82, 372 (2010).

    CAS  Google Scholar 

  33. J. Cai, S. Ding, G. Chen, Y. Sun, and Q. Xie, In situ electrodeposition of mesoporous aligned α-Fe2O3 nanoflakes for highly sensitive nonenzymatic H2O2 sensor. Appl. Surf. Sci. 456, 302 (2018).

    CAS  Google Scholar 

  34. A. Levine, R. Tenhaken, R. Dixon, and C. Lamb, H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583 (1994).

    CAS  Google Scholar 

  35. N.S. Dumore and M. Mukhopadhyay, Development of novel electrochemical sensor based on PtNPs-SeNPs-FTO nanocomposites via electrochemical deposition for detection of hydrogen peroxide. J. Environ. Chem. Eng. 10, 107058 (2022).

    CAS  Google Scholar 

  36. Y. Li, J. Zhang, J. Xuan, L. Jiang, and J. Zhu, Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem. Commun. 12, 777 (2010).

    CAS  Google Scholar 

  37. K.S.S. Prasad, J.V. Vaghasiya, S.S. Soni, J. Patel, R. Patel, M. Kumari, and F. Jasmani, Microbial selenium nanoparticles (SeNPs) and their application as a sensitive hydrogen peroxide biosensor. Appl. Biochem. Biotechnol. 177, 1386 (2015).

    CAS  Google Scholar 

  38. K.J. Huang, D.J. Niu, X. Liu, Z.W. Wu, Y. Fan, Y.F. Chang, and Y.Y. Wu, Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochim. Acta 56, 2947 (2011).

    CAS  Google Scholar 

  39. S. Woo, Y.R. Kim, T.D. Chung, Y. Piao, and H. Kim, Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim. Acta 59, 509 (2012).

    CAS  Google Scholar 

  40. G. Yu, W. Wu, X. Pan, Q. Zhao, X. Wei, and Q. Lu, High sensitive and selective sensing of hydrogen peroxide released from pheochromocytoma cells based on Pt-Au bimetallic nanoparticles electrodeposited on reduced graphene sheets. Sensors 15, 2709 (2015).

    CAS  Google Scholar 

  41. P. Chakraborty, S. Dhar, K. Debnath, and S.P. Mondal, Glucose and hydrogen peroxide dual-mode electrochemical sensing using hydrothermally grown CuO nanorods. J. Electroanal. Chem. 833, 213 (2019).

    CAS  Google Scholar 

  42. H. Lu, S. Yu, Y. Fan, C. Yang, and D. Xu, Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloids Surf B Biointerfaces 101, 106 (2013).

    CAS  Google Scholar 

  43. Y. Zhang, X. Wang, Y. Zhu, H. Jiang, X. Bai, and K.-K. Shiu, highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. Anal. Chem. 86, 9459 (2014).

    CAS  Google Scholar 

  44. D. Lu, Y. Zhang, S. Lin, L. Wang, and C. Wang, Synthesis of PtAu bimetallic nanoparticles on graphene–carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor. Talanta 112, 111 (2013).

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, Mumbai, Central Research Facility (CRF), IIT Delhi, New Delhi, and Materials Research Centre, MNIT Jaipur, for providing the research facility for the characterization of samples. We also thank the Ministry of Education (MoE), Government of India, India, for providing fellowship and the Chemical Engineering Department, SVNIT, Surat, for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

NSD: formal analysis, data curation, investigation, methodology, writing- original draft. MM: data curation, conceptualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Nilesh S. Dumore.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumore, N.S., Mukhopadhyay, M. Electroanalytical Study of SSeNPs–CGA–FTO Electrochemical Sensor Towards the Detection of H2O2. J. Electron. Mater. 52, 6800–6814 (2023). https://doi.org/10.1007/s11664-023-10612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10612-6

Keywords

Navigation