Skip to main content
Log in

Sensing Copper and Ferricyanide Ions in Wastewater Using a Membrane-Less, Easy-to-Use Soil Microbial Fuel Cell-Based Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The application of microbial fuel cell (MFC)-based sensors has attracted considerable interest in the last decade because of their advantages in terms of low cost, self-sustainability without power sources, and environmentally friendly nature. Detecting and monitoring toxicities, especially heavy metals, in wastewater is critical to ensuring a safe environment for human health. This study introduces a low-cost, membrane-less, compact, and easy-to-use soil MFC (SMFC)-based sensor to detect copper (Cu2+) and ferricyanide ([Fe(CN)6]3−) ions. A series of five concentrations of toxic ions from 100 mg/L to 500 mg/L were used to evaluate the sensing capability of the proposed SMFC. An immediate increase in voltage was observed when SMFC was exposed to the toxic agents, with the maximum peak reached in about 30–60 min (depending on the concentrations). The highest IR% (inhibition ratio) was 100.8% for 500 mg/L of Cu2+. The IR% of ferricyanide was lower, reaching a maximum of 49.2%. A linear relationship between IR% and toxic agent concentration was observed for both Cu2+ and ferricyanide detection in both rounds of exposure. The employment of the designed SMFC enabled the detection of Cu2+ and ferricyanide in a simple method.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Fawell and C.N. Ong, Emerging contaminants and the implications for drinking water. Int. J. Water Resour. Dev. 28, 247 (2012). https://doi.org/10.1080/07900627.2012.672394.

    Article  Google Scholar 

  2. R. Naidu, V.A.A. Espana, Y. Liu, and J. Jit, Emerging contaminants in the environment: risk-based analysis for better management. Chemosphere. 154, 350 (2016). https://doi.org/10.1016/J.CHEMOSPHERE.2016.03.068.

    Article  CAS  Google Scholar 

  3. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, and D.J. Sutton, Heavy metals toxicity and the environment. EXS 101, 133 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  4. A photosynthetic toxicity biosensor for water | Elsevier Enhanced Reader, (n.d.). https://reader.elsevier.com/reader/sd/pii/S0013468619307388?token=FA44736825919815A0EB9777E12D7D36F7D2194221E6D3CA04F2B233326DFEB6BB3409F710023DF7644967EECE1749CE&originRegion=us-east-1&originCreation=20210625044927. Accessed 25 June 2021

  5. Y. Jiang X. Yang, P. Liang, P. Liu, and X. Huang, Microbial fuel cell sensors for water quality early warning systems: fundamentals, signal resolution, optimization and future challenges. Renew. Sustain. Energy Rev. 81, 292 (2018). https://doi.org/10.1016/j.rser.2017.06.099.

    Article  CAS  Google Scholar 

  6. B.C. Kim and M.B. Gu, A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant. Environ. Monit. Assess. 109, 123 (2005). https://doi.org/10.1007/S10661-005-5843-7.

    Article  CAS  Google Scholar 

  7. J. Chouler and M. di Lorenzo, Pesticide detection by a miniature microbial fuel cell under controlled operational disturbances. Water Sci. Technol. 79, 2231 (2019). https://doi.org/10.2166/wst.2019.207.

    Article  CAS  Google Scholar 

  8. J. Chouler and M. di Lorenzo, Water quality monitoring in developing countries; can microbial fuel cells be the answer? Biosensors (Basel). 5, 450 (2015). https://doi.org/10.3390/BIOS5030450.

    Article  CAS  Google Scholar 

  9. N.E. Stein, H.V.M. Hamelers, and C.N.J. Buisman, Influence of membrane type, current and potential on the response to chemical toxicants of a microbial fuel cell based biosensor. Sens. Actuators B Chem. 163, 1 (2012). https://doi.org/10.1016/J.SNB.2011.10.060.

    Article  CAS  Google Scholar 

  10. N.E. Stein, H.M.V. Hamelers, G. van Straten, and K.J. Keesman, On-line detection of toxic components using a microbial fuel cell-based biosensor. J. Process. Control. 22, 1755 (2012). https://doi.org/10.1016/J.JPROCONT.2012.07.009.

    Article  CAS  Google Scholar 

  11. B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181 (2006). https://doi.org/10.1021/es0605016.

    Article  CAS  Google Scholar 

  12. M. Kim, M.S. Hyun, G.M. Gadd, and H.J. Kim, A novel biomonitoring system using microbial fuel cells. J. Environ. Monit. 9, 1323 (2007). https://doi.org/10.1039/B713114C.

    Article  CAS  Google Scholar 

  13. Y. Zhang, B. Min, L. Huang, and I. Angelidaki, Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresour. Technol. 102, 1166 (2011). https://doi.org/10.1016/J.BIORTECH.2010.09.044.

    Article  CAS  Google Scholar 

  14. L. Zhang, C. Li, L. Ding, K. Xu, and H. Ren, Influences of initial pH on performance and anodic microbes of fed-batch microbial fuel cells. J. Chem. Technol. Biotechnol. 86, 1226 (2011). https://doi.org/10.1002/JCTB.2641.

    Article  CAS  Google Scholar 

  15. L. Zhang, J. Li, X. Zhu, D. Ye, Q. Fu, and Q. Liao, Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields: effects of external resistance. Ind. Eng. Chem. Res. 56, 3767 (2017). https://doi.org/10.1021/ACS.IECR.6B04619/ASSET/IMAGES/LARGE/IE-2016-04619Z_0006.JPEG.

    Article  CAS  Google Scholar 

  16. J. Chouler, Á. Cruz-Izquierdo, S. Rengaraj, J.L. Scott, and M. di Lorenzo, A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water. Biosens. Bioelectron. 102, 49 (2018). https://doi.org/10.1016/J.BIOS.2017.11.018.

    Article  CAS  Google Scholar 

  17. Y. Jiang, P. Liang, P. Liu, X. Yan, Y. Bian, and X. Huang, A cathode-shared microbial fuel cell sensor array for water alert system. Int. J. Hydrogen Energy. 42, 4342 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.050.

    Article  CAS  Google Scholar 

  18. Z. Xu, B. Liu, Q. Dong, Y. Lei, Y. Li, J. Ren, J. McCutcheon, and B. Li, Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresour. Technol. 197, 244 (2015). https://doi.org/10.1016/J.BIORTECH.2015.08.081.

    Article  CAS  Google Scholar 

  19. J. Li, J. Hu, C. Yang, W. Pu, H. Hou, J. Xu, B. Liu, and J. Yang, Enhanced detection of toxicity in wastewater using a 2D smooth anode based microbial fuel cell toxicity sensor. RSC Adv. (2019). https://doi.org/10.1039/c8ra10337b.

    Article  Google Scholar 

  20. H. Lee, W. Yang, X. Wei, A. Fraiwan, S. Choi, A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). (2015) pp. 573–576. Doi: https://doi.org/10.1109/MEMSYS.2015.7051020

  21. J.Z. Sun, G.P. Kingori, R.W. Si, D.D. Zhai, Z.H. Liao, D.Z. Sun, T. Zheng, and Y.C. Yong, Microbial fuel cell-based biosensors for environmental monitoring: a review. Water. Sci. Technol. 71, 801 (2015). https://doi.org/10.2166/WST.2015.035.

    Article  CAS  Google Scholar 

  22. D. Yu, L. Bai, J. Zhai, Y. Wang, and S. Dong, Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta 168, 210 (2017). https://doi.org/10.1016/j.talanta.2017.03.048.

    Article  CAS  Google Scholar 

  23. G.H. Wang, C.Y. Cheng, M.H. Liu, T.Y. Chen, M.C. Hsieh, and Y.C. Chung, Utility of Ochrobactrum anthropi YC152 in a microbial fuel cell as an early warning device for hexavalent chromium determination. Sensors 16, 1272 (2016). https://doi.org/10.3390/S16081272.

    Article  Google Scholar 

  24. S. Zhao, P. Liu, Y. Niu, Z. Chen, A. Khan, P. Zhang, and X. Li, A novel early warning system based on a sediment microbial fuel cell for in situ and real time hexavalent chromium detection in industrial wastewater. Sensors (Basel). (2018). https://doi.org/10.3390/S18020642.

    Article  Google Scholar 

  25. A. Prévoteau, P. Clauwaert, F.M. Kerckhof, and K. Rabaey, Oxygen-reducing microbial cathodes monitoring toxic shocks in tap water. Biosens. Bioelectron. 132, 115 (2019). https://doi.org/10.1016/J.BIOS.2019.02.037.

    Article  Google Scholar 

  26. S. Naik and S.E. Jujjavarapu, Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water. J. Environ. Chem. Eng. 9, 105318 (2021). https://doi.org/10.1016/J.JECE.2021.105318.

    Article  CAS  Google Scholar 

  27. L. Liu, Y. Lu, W. Zhong, L. Meng, and H. Deng, On-line monitoring of repeated copper pollutions using sediment microbial fuel cell based sensors in the field environment. Sci. Total Environ. 748, 141544 (2020). https://doi.org/10.1016/J.SCITOTENV.2020.141544.

    Article  CAS  Google Scholar 

  28. J. Wang, H. Deng, S.S. Wu, Y.C. Deng, L. Liu, C. Han, Y.B. Jiang, and W.H. Zhong, Assessment of abundance and diversity of exoelectrogenic bacteria in soil under different land use types. Catena (Amst). 172, 572 (2019). https://doi.org/10.1016/J.CATENA.2018.09.028.

    Article  CAS  Google Scholar 

  29. N. Ueoka, A. Kouzuma, and K. Watanabe, Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes. Bioelectrochemistry 124, 1 (2018). https://doi.org/10.1016/J.BIOELECHEM.2018.06.008.

    Article  CAS  Google Scholar 

  30. S.Z. Abbas, Y.C. Yong, and F.X. Chang, Anode materials for soil microbial fuel cells: recent advances and future perspectives. Int. J. Energy Res. 46, 712 (2022). https://doi.org/10.1002/ER.7288.

    Article  CAS  Google Scholar 

  31. S.Z. Abbas and M. Rafatullah, Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere. 272, 129691 (2021). https://doi.org/10.1016/J.CHEMOSPHERE.2021.129691.

    Article  CAS  Google Scholar 

  32. Y. Jiang, P. Liang, P. Liu, D. Wang, B. Miao, and X. Huang, A novel microbial fuel cell sensor with biocathode sensing element. Biosens. Bioelectron. 94, 344 (2017). https://doi.org/10.1016/J.BIOS.2017.02.052.

    Article  CAS  Google Scholar 

  33. H. Moon, I.S. Chang, K.H. Kang, J.K. Jang, and B.H. Kim, Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol. Lett. 26, 1717 (2004). https://doi.org/10.1007/S10529-004-3743-5/METRICS.

    Article  CAS  Google Scholar 

  34. Y. Yi, B. Xie, T. Zhao, Z. Li, D. Stom, and H. Liu, Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants. Bioelectrochemistry 125, 71 (2019). https://doi.org/10.1016/J.BIOELECHEM.2018.09.003.

    Article  CAS  Google Scholar 

  35. A. Adekunle, C. Rickwood, and B. Tartakovsky, Online monitoring of heavy metal–related toxicity using flow-through and floating microbial fuel cell biosensors. Environ. Monit. Assess. 192, 1 (2020). https://doi.org/10.1007/S10661-019-7850-0/FIGURES/7.

    Article  Google Scholar 

  36. K. Kubota, T. Watanabe, H. Maki, G. Kanaya, H. Higashi, and K. Syutsubo, Operation of sediment microbial fuel cells in Tokyo Bay, an extremely eutrophicated coastal sea. Bioresour. Technol. Rep. 6, 39 (2019). https://doi.org/10.1016/J.BITEB.2019.02.001.

    Article  Google Scholar 

  37. Y. Wang, Y. Chen, Q. Wen, H. Zheng, H. Xu, and L. Qi, Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy. 189, 116342 (2019). https://doi.org/10.1016/J.ENERGY.2019.116342.

    Article  CAS  Google Scholar 

  38. Y.B. Jiang, H. Deng, D.M. Sun, and W.H. Zhong, Electrical signals generated by soil microorganisms in microbial fuel cells respond linearly to soil Cd2+ pollution. Geoderma. 255, 35 (2015). https://doi.org/10.1016/J.GEODERMA.2015.04.022.

    Article  Google Scholar 

  39. W. Gustave, Z.F. Yuan, R. Sekar, V. Toppin, J.Y. Liu, Y.X. Ren, J. Zhang, and Z. Chen, Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells. Res. Microbiol. 170, 97 (2019). https://doi.org/10.1016/J.RESMIC.2018.11.002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Taguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 507 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HUD., Nguyen, DT. & Taguchi, K. Sensing Copper and Ferricyanide Ions in Wastewater Using a Membrane-Less, Easy-to-Use Soil Microbial Fuel Cell-Based Sensor. J. Electron. Mater. 52, 6815–6824 (2023). https://doi.org/10.1007/s11664-023-10601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10601-9

Keywords

Navigation