Skip to main content
Log in

Synthesis and Luminescence Properties of High-Purity Red-Light-Emitting Eu3+ -Doped NaZr2(PO4)3 Phosphor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article reports the successful synthesis of high-purity \({\text{NaZr}}_{2} \left( {{\text{PO}}_{4} } \right)_{3}{:}{\text{Eu}}^{3 + } \left( {0.5\;{\text{mol}}.\%{-}5\;{\text{mol}}.\% } \right) \) phosphate phosphor by solution combustion synthesis which emits in the reddish region. The x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, photoluminescence spectroscopy, and diffuse reflectance spectroscopy measurements have all been used to analyze the synthesized phosphor’s structural, vibrational, elemental composition, electronic, and optical characteristics in detail. Due to the preponderance of the magnetic dipole transition of the Eu3+ ions, the synthesized phosphors illuminated at the near ultraviolet light indicated the emission in the visible area. The phosphor’s computed photometric characteristics indicated that the emission is in the reddish region with a high color purity of 94%. These findings demonstrated that the phosphor might work well in a variety of optoelectronic devices, including phosphor-converted white-light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Nakamura, Blue-green light-emitting diodes and violet laser diodes. MRS Bull. 22, 29 (1997).

    Article  CAS  Google Scholar 

  2. Z.P. Ci, R.N. Guan, L.J. Jin, L.L. Han, J.C. Zhang, J. Ma, and Y.H. Wang, Host-sensitized white light-emitting phosphor MgY4Si3O13:Dy3+ with satisfactory thermal properties for UVLEDs. Cryst. Eng. Commun. 17, 4982 (2015).

    Article  CAS  Google Scholar 

  3. T. Kishida, T. Ban, and N. Kobayashi, High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors. Appl. Phys. Lett. 82, 3817 (2003).

    Article  Google Scholar 

  4. D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, Illumination with solid state lighting technology. IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).

    Article  CAS  Google Scholar 

  5. M.G. Craford, N. Holonyak, and F.A. Kish, In pursuit of the ultimate lamp. Sci. Am. 284, 62 (2001).

    Article  CAS  Google Scholar 

  6. Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, and G. Fu, A novel green-emitting phosphor NaCaPO4: Eu2+ for white LEDs. Mater. Lett. 62, 1884 (2008).

    Article  CAS  Google Scholar 

  7. X. Li, L. Guan, X. Li, J. Wen, and Z. Yang, Luminescent properties of NaBaPO4: Eu3+ red-emitting phosphor for white light-emitting diodes. Powder Technol. 200, 12 (2010).

    Article  CAS  Google Scholar 

  8. J. Oliva, C.R. Garcia, L.A. Diaz Torres, C. Camacho, M. Guzman-Rocha, M.T. Romero, and G.A. Hirata, Effect of the Er3+ co-dopant on the green upconversion emission of LaSr2AlO5:Yb3+ phosphors. J. Electron. Mater. 47, 6567 (2018).

    Article  CAS  Google Scholar 

  9. S. Zhang, Y. Huang, and H.J. Seo, Luminescence properties and structure of Eu2+ doped KMgPO4 phosphor. Opt. Mater. 32, 1548 (2010).

    Article  CAS  Google Scholar 

  10. S. Yang, C. Yang, J. Yan, and C. Lin, Improvement of the luminescence of red LaPO4: Eu nanophosphors for a near-UV LED. J. Electron. Mater. 43, 3593 (2014).

    Article  CAS  Google Scholar 

  11. K.N. Shinde, S.J. Dhoble, and A. Kumar, Photoluminescence studies of NaCaPO4: RE (RE, Dy3+, Mn2+ or Gd3+). Physica B. 406, 94 (2011).

    Article  CAS  Google Scholar 

  12. F. Liu, D. Deng, M. Wu, B. Chen, L. Zhou, and S. Xu, Alkali ions substitution induced tuning of sensitivity in mixed-valence europium ion co-doped NaZr2(PO4)3 thermochromic phosphor for optical thermometry. J. Alloys Compd. 865, 158820 (2021).

    Article  CAS  Google Scholar 

  13. Z. Wua, J. Liu, and M. Gong, Thermally stable luminescence of SrMg2(PO4)2:Eu2+ phosphor for white light NUV light-emitting diodes. Chem. Phys. Lett. 466, 88 (2008).

    Article  Google Scholar 

  14. X. Huang, B. Li, and H. Guo, Highly efficient Eu3+-activated K2Gd(WO4)(PO4) red-emitting phosphors with superior thermal stability for solid-state lighting. Ceram. Int. 43, 10566 (2017).

    Article  CAS  Google Scholar 

  15. K.J. Albert, E.A. Rathnakumari, and S.M.M. Kennedy, Synthesis, photoluminescent properties, and an insight into the Judd–Ofelt analysis of the NaPbBi(2–x)(PO4)3: xEu3+ orthophosphate phosphors for light applications. J. Alloys Compd. 934, 168047 (2023).

    Article  CAS  Google Scholar 

  16. X. Huang, and H. Guo, A novel highly efficient single-composition tunable white-light-emitting LiCa3MgV3O12:Eu3+ phosphor. Dyes Pigm. 154, 82 (2018).

    Article  CAS  Google Scholar 

  17. Y. Jia, D. Xu, X. Yun, J. Zhou, and J. Sun, Synthesis and luminescence properties of novel SrScLiTeO6, Ln(Ln = Eu3+, Sm3+) phosphors for white LED applications. Appl. Phys. A 126, 846 (2020).

    Article  CAS  Google Scholar 

  18. Y. Li, W.H. Shi, L.M. Dong, S.X. Xu, H.J. Huang, and J.R. Yina, Preparation and properties of SR3B2O6, Dy3+, Eu3+ white phosphors using the high-temperaturesolid-state method. J. Appl. Spectrosc. 89, 534 (2022).

    Article  CAS  Google Scholar 

  19. V.D. Sharma, P. Khajuria, R. Prakash, and R.J. Chaudhary, X-ray photoemission and optical investigation of novel Sm3+ doped NaZr2(PO4)3 phosphor. Optik 267, 169711 (2022).

    Article  CAS  Google Scholar 

  20. X. He, J. Huang, L. Zhou, Q. Pang, and F. Gong, Synthesis and photoluminescence properties of MZr2(PO4)3, Eu3+; Bi3+ (M=Na; K) phosphors. Cent. Eur. J. Phys. 10, 514 (2012).

    CAS  Google Scholar 

  21. B.D. Cullity, Element of X-Ray Diffraction, 2nd ed., (New York: Addison-Wesley, 1956).

    Google Scholar 

  22. V.D. Mote, Y. Purushotham, and B.N. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012).

    Article  Google Scholar 

  23. K. Kamali, T.R. Ravindran, C. Ravi, Y. Sorb, N. Subramanian, and A.K. Arora, Anharmonic phonons of NaZr2(PO4)3 studied by Raman spectroscopy, first-principles calculations, and x-ray diffraction. Phys. Rev. B 86, 144301 (2012).

    Article  Google Scholar 

  24. R. Mahajan, R. Prakash, S. Kumar, V. Kumar, R.J. Choudhary, and D.M. Phase, Surface and luminescent properties of Mg3(PO4)2:Dy3+ phosphors. Optik 225, 165717 (2021).

    Article  CAS  Google Scholar 

  25. P. Khajuria, R. Mahajan, S. Kumar, R. Prakash, R.J. Choudhary, and D.M. Phase, Surface and spectral investigation of Sm3+ doped MgO-ZrO2 phosphors. Optik 216, 164909 (2020).

    Article  CAS  Google Scholar 

  26. A. Majjane, A. Chahine, M. Et-Tabirou, B. Echchahed, T.O. Do, and P.M. Breen, X-ray photoelectron spectroscopy (XPS) and FTIR studies of vanadium barium phosphate glasses. Mater. Chem. Phys. 143, 779 (2014).

    Article  CAS  Google Scholar 

  27. P.Y. Shih, S.W. Yung, and T.S. Chin, Thermal and corrosion behavior of PzOs-NazO-CuO glasses. J. Non-Cryst. Solids. 224, 143 (1998).

    Article  CAS  Google Scholar 

  28. P. Khajuria, R. Mahajan, R. Prakash, R.J. Choudhary, and D.M. Phase, Spectral and optical properties of Ruddlesden–Popper-type Ba3Zr2O7 phosphors doped with Eu3+ ion. Appl. Phys. A 127, 807 (2021).

    Article  CAS  Google Scholar 

  29. S.N. Ruddlesden, and P. Popper, The compound Sr3Ti2O7 and its structure. Acta Cryst. 11, 54 (1958).

    Article  CAS  Google Scholar 

  30. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953).

    Article  CAS  Google Scholar 

  31. http://www.mathworks.com.matlabcentral/fileexchange/29620ciecoordinatecalculator. Accessed 08 Feb 2023.

  32. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142 (1992).

    Article  Google Scholar 

  33. X. Zhang, and M. Gong, Single-phased white-light-emitting NaCaBO3: Ce3+, Tb3+, Mn2+ phosphors for LED applications. Dalton Trans. 43, 2465 (2014).

    Article  CAS  Google Scholar 

  34. S. Som, A. Choubey, and S.K. Sharma, Spectral and trapping parameters of Eu3+ in Gd2O2S nanophosphors. J. Exp. Nanosci. 10, 350 (2013).

    Article  Google Scholar 

  35. J. Tauc, and A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569 (1972).

    Article  Google Scholar 

  36. L. Zhu, C. Zuo, Z. Luo, and A. Lu, Photoluminescence of Dy3+and Sm3+: SiO2-Al2O3-LiF-CaF2 glasses. Physica B 405, 4401 (2010).

    Article  CAS  Google Scholar 

  37. M. Grundmann, The Physics of Semiconductors (Springer, New York, 2006) ISBN 978-3-642-13884-3.

  38. A.S. Ahmed, S.M. Muhamed, M.L. Singla, S. Tabassum, A.H. Naqvi, and A. Azam, Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin. 131, 1 (2011).

    Article  CAS  Google Scholar 

  39. P. Khajuria, R. Mahajan, S. Kumar, and R. Prakash, Synthesis and optical properties of magnesium zirconium oxide. AIP Conf. Proc. 2220, 0200023 (2020).

    Google Scholar 

  40. B. Samanta, D. Dutta, and S. Ghosh, Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses. Physica B Phys. Condens. Matter 515, 82 (2017).

    Article  CAS  Google Scholar 

  41. V. Dimitrov, and S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79, 1741 (1996).

    Article  CAS  Google Scholar 

  42. H. Lu, and X. Meng, Correlation between band gap, dielectric constant, Young’s modulus and melting temperature of GaN nanocrystals and their size and shape dependences. Sci. Rep. 5, 16939 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially carried out using the facilities of UGC-DAE CSR. The author (VDS) acknowledge the financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) Project Number CSR-ISUM-45/CRS-328. The authors are thankful to Mr. Sharad Karwal and Mr. Avinash Wadikar as they assisted the authors with XPS measurements at the Indus-1 synchrotron radiation source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prakash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.D., Khajuria, P., Prakash, R. et al. Synthesis and Luminescence Properties of High-Purity Red-Light-Emitting Eu3+ -Doped NaZr2(PO4)3 Phosphor. J. Electron. Mater. 52, 6146–6158 (2023). https://doi.org/10.1007/s11664-023-10547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10547-y

Keywords

Navigation