Skip to main content
Log in

Synthesis and Optical Spectroscopy of YPO4:Eu3+ Orange–Red Phosphors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

YPO4:x mol.% Eu3+ phosphors with different dopant concentrations (x = 3, 5, 8, 11, 13) have been synthesized via high-temperature solid-state reaction. X-ray diffraction analysis and Raman and infrared (IR) spectroscopy were applied for detailed structural characterization. Under excitation at wavelength of 395 nm, the photoluminescence spectra displayed the 5D0 → 7F J (J = 1, 2, 3, 4) intra-4f shell transitions related to Eu3+ ion. The radiative lifetime was estimated using the Ω 2 and Ω 4 Judd–Ofelt intensity parameters. The highest luminescence intensity was achieved for an optimal europium concentration of 11 mol.%. The critical energy-transfer distance for Eu3+ ions was evaluated to be 10.74 Å. We also studied the temperature-dependent photoluminescence and Commission Internationale de l’Éclairage chromaticity diagram. It was found that Eu3+-doped YPO4 exhibited good thermal stability and its emission intensity decreased slightly above room temperature. In addition, the color purity of this phosphor was as high as 91% for the YPO4:13% Eu3+ sample, making it a potential orange–red phosphor for application in ultraviolet-pumped white light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Liu, W. Zhang, Z. Hu, Z. Feng, X. Sheng, and Y. Liang, J. Mater. Sci. Mater. Electron. 24, 4253 (2013).

    Article  Google Scholar 

  2. M.N. Luwang, R.S. Ningthoujam, S.K. Srivastava, and R.K. Vatsa, J. Mater. Chem. 21, 5326 (2011).

    Article  Google Scholar 

  3. W. Di, X. Wang, B. Chen, and X. Zhao, Chem. Lett. 34, 566 (2005).

    Article  Google Scholar 

  4. D.G. Matthews, J.R. Boon, R.S. Conroy, and B.D. Sinclair, J. Mod. Opt. 43, 1079 (1996).

    Article  Google Scholar 

  5. V.N. Makhov, N.Y. Kirikova, M. Kirm, J.C. Krupa, P. Liblik, A. Lushchik, C. Lushchik, E. Negodin, and G. Zimmerer, Nucl. Instrum. Methods Phys. Res. Sect. A 486, 437 (2002).

    Article  Google Scholar 

  6. W. Liu, Y. Wang, and L. Cheng, J. Am. Ceram. Soc. 94, 3449 (2011).

    Article  Google Scholar 

  7. L. Zhang, G. Jia, H. You, K. Liu, M. Yang, Y. Song, Y. Zheng, Y. Huang, N. Guo, and H. Zhang, Inorg. Chem. 49, 3305 (2010).

    Article  Google Scholar 

  8. H. Jiu, W. Jia, L. Zhang, C. Huang, Y. Feng, and Q. Cheng, Superlattices Microstruct. 79, 9 (2015).

    Article  Google Scholar 

  9. W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, and X. Chen, Phys. Chem. Chem. Phys. 14, 6974 (2012).

    Article  Google Scholar 

  10. I.-S. Cho, G.K. Choi, J.-S. An, J.-R. Kim, and K.S. Hong, Mater. Res. Bull. 44, 173 (2009).

    Article  Google Scholar 

  11. J.C. Batista, P.C. de Sousa Filho, and O.A. Serra, Dalton Trans. 41, 6310 (2012).

    Article  Google Scholar 

  12. A.H. Krumpel, A.J.J. Bos, A. Bessière, E. van der Kolk, and P. Dorenbos, Phys. Rev. B: Condens. Matter 80, 085103 (2009).

    Article  Google Scholar 

  13. O.K. Moune, M.D. Faucher, and N. Edelstein, J. Lumin. 96, 51 (2002).

    Article  Google Scholar 

  14. J. Collins, M. Geen, M. Bettinelli, and B. Di Bartolo, J. Lumin. 132, 2626 (2012).

    Article  Google Scholar 

  15. Y. Lu and H. Yu, J. Mater. Sci. Mater. Electron. 25, 1013 (2014).

    Article  Google Scholar 

  16. G. Du, W. Guo, J.M. Khalaf Al-zyadi, Y. Han, P. Liu, and Z. Liu, J. Nanopart. Res. 15, 1619 (2013).

    Article  Google Scholar 

  17. F. Angiuli, E. Cavalli, and A. Belletti, J. Solid State Chem. 192, 289 (2012).

    Article  Google Scholar 

  18. M.G. Brik, M. Bettinelli, and E. Cavalli, J. Solid State Chem. 230, 49 (2015).

    Article  Google Scholar 

  19. R.A. Barve, N. Suriyamurthy, B.S. Panigrahi, and B. Venkatraman, Phys. B 475, 156 (2015).

    Article  Google Scholar 

  20. L. Zhang, L. Fu, X. Yang, Z. Fu, X. Qi, and Z. Wu, J. Mater. Chem. C 2, 9149 (2014).

    Article  Google Scholar 

  21. J.M. Nedelec, D. Avignant, and R. Mahiou, Chem. Mater. 14, 651 (2002).

    Article  Google Scholar 

  22. S. Majeed, M. Bashir, and S.A. Shivashankar, J. Nanopart. Res. 17, 1 (2015).

    Article  Google Scholar 

  23. A.K. Parchur, A.I. Prasad, S.B. Rai, R. Tewari, R.K. Sahu, G.S. Okram, R.A. Singh, and R.S. Ningthoujam, AIP Adv. 2, 032119 (2012).

    Article  Google Scholar 

  24. D. Wang and Y. Wang, Mater. Chem. Phys. 115, 699 (2009).

    Article  Google Scholar 

  25. M. Beltaif, M. Dammak, M. Megdiche, and K. Guidara, J. Lumin. 177, 373 (2016).

    Article  Google Scholar 

  26. K. Li, H. Lian, M. Shang, and J. Lin, Dalton Trans. 44, 20542 (2015).

    Article  Google Scholar 

  27. C. Cannas, M. Mainas, A. Musinu, G. Piccaluga, S. Enzo, M. Bazzoni, A. Speghini, and M. Bettinelli, Opt. Mater. 29, 585 (2007).

    Article  Google Scholar 

  28. G. Phaomei, R.S. Ningthoujam, W.R. Singh, N.S. Singh, M.N. Luwang, R. Tewari, and R.K. Vatsa, Opt. Mater. 32, 616 (2010).

    Article  Google Scholar 

  29. B. Romero, S. Bruque, M.A.G. Aranda, and J.E. Iglesias, Inorg. Chem. 33, 1869 (1994).

    Article  Google Scholar 

  30. N. Yaiphaba, R.S. Ningthoujam, N.R. Singh, and R.K. Vatsa, Eur. J. Inorg. Chem. 2010, 2682 (2010).

    Article  Google Scholar 

  31. S. Lucas, E. Champion, D. Bernache-Assollant, and G. Leroy, J. Solid State Chem. 177, 1312 (2004).

    Article  Google Scholar 

  32. V. Koleva, E. Zhecheva, and R. Stoyanova, J. Alloys Compd. 476, 950 (2009).

    Article  Google Scholar 

  33. C.R. Patra, G. Alexandra, S. Patra, D.S. Jacob, A. Gedanken, A. Landau, and Y. Gofer, New J. Chem. 29, 733 (2005).

    Article  Google Scholar 

  34. G.M. Begun, G.W. Beall, L.A. Boatner, and W.J. Gregor, J. Raman Spectrosc. 11, 273 (1981).

    Article  Google Scholar 

  35. H. Yuan, K. Wang, S. Li, X. Tan, Q. Li, T. Yan, B. Cheng, K. Yang, B. Liu, G. Zou, and B. Zou, J. Phys. Chem. C 116, 24837 (2012).

    Article  Google Scholar 

  36. E. Pavitra, G.S. Rama Raju, and J.S. Yu, Mater. Lett. 156, 173 (2015).

    Article  Google Scholar 

  37. H. Lai, H. Yang, C. Tao, and X. Yang, Phys. Status Solidi A 204, 1178 (2007).

    Article  Google Scholar 

  38. X. Yang, X. Dong, J. Wang, and G. Liu, Mater. Lett. 63, 629 (2009).

    Article  Google Scholar 

  39. L. Zhang, H. Jiu, Y. Fu, Y. Sun, and Y. Wang, J. Rare Earth 31, 449 (2013).

    Article  Google Scholar 

  40. Y. Zheng, H. You, G. Jia, K. Liu, Y. Song, M. Yang, and H. Zhang, Cryst. Growth Des. 9, 5101 (2009).

    Article  Google Scholar 

  41. C. Brecher, H. Samelson, A. Lempicki, R. Riley, and T. Peters, Phys. Rev. 155, 178 (1967).

    Article  Google Scholar 

  42. M.A. Hassairi, A. Garrido Hernández, T. Kallel, M. Dammak, D. Zambon, G. Chadeyron, A. Potdevin, D. Boyer, and R. Mahiou, J. Lumin. 170, 200 (2016).

    Article  Google Scholar 

  43. N. Ben Amar, T. Koubaa, M.A. Hassairi, I. Kbaïli, and M. Dammak, J. Lumin. 160, 95 (2015).

    Article  Google Scholar 

  44. K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).

    Article  Google Scholar 

  45. D.L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  Google Scholar 

  46. G. Blasse, Phys. Lett. A 28, 444 (1968).

    Article  Google Scholar 

  47. K. Li, M. Xu, J. Fan, M. Shang, H. Lian, and J. Lin, J. Mater. Chem. C 3, 11618 (2015).

    Article  Google Scholar 

  48. C.S. McCamy, Color Res. Appl. 17, 142 (1992).

    Article  Google Scholar 

  49. N. Dhananjaya, C. Shivakumara, R. Saraf, and H. Nagabhushana, Mater. Res. Bull. 75, 100 (2016).

    Article  Google Scholar 

  50. J. Zheng, Q. Cheng, S. Wu, Y. Zhuang, Z. Guo, Y. Lu, and C. Chen, Mater. Chem. Phys. 165, 168 (2015).

    Article  Google Scholar 

  51. G. Blasse and B.C. Grabmaier, in Luminescent Materials, ed. By G. Blasse and B.C. Grabmaier (Springer, Berlin, 1994), pp. 71–90.

  52. J. Chen, W. Zhao, J. Wang, and N. Wang, J. Mater. Sci. Mater. Electron. 27, 237 (2016).

    Article  Google Scholar 

  53. L. Wang, W. Guo, Y. Tian, P. Huang, Q. Shi, and C. Cui, Ceram. Int. 42, 13648 (2016).

    Article  Google Scholar 

  54. B.R. Judd, Phys. Rev. 127, 750 (1962).

    Article  Google Scholar 

  55. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    Article  Google Scholar 

  56. Ž. Antić, R. Krsmanović, V. Ðorđević, T. Dramićanin, and M.D. Dramićanin, Acta Phys. Pol. A 116, 622 (2009).

    Article  Google Scholar 

  57. B. Sailaja, R. Joyce Stella, G. Thirumala Rao, B. Jaya Raja, V. Pushpa Manjari, and R.V.S.S.N. Ravikumar, J. Mol. Struct. 1096, 129 (2015).

    Article  Google Scholar 

  58. G. Gupta, A.D. Sontakke, P. Karmakar, K. Biswas, S. Balaji, R. Saha, R. Sen, and K. Annapurna, J. Lumin. 149, 163 (2014).

    Article  Google Scholar 

  59. C. Görller-Walrand and K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, ed. By J.-C.G. Bünzli, V.K. Pecharsky (Elsevier, North Holland, 1998), pp. 101–264.

  60. G. Anjaiah, S.K. NayabRasool, and P. Kistaiah, J. Lumin. 159, 110 (2015).

    Article  Google Scholar 

  61. W. Stambouli, H. Elhouichet, B. Gelloz, and M. Férid, J. Lumin. 138, 201 (2013).

    Article  Google Scholar 

  62. Y. Tian, X. Qi, X. Wu, R. Hua, and B. Chen, J. Phys. Chem. C 113, 10767 (2009).

    Article  Google Scholar 

  63. H. Wen, C.-K. Duan, G. Jia, P.A. Tanner, and M.G. Brik, J. Phys. Chem. 110, 033536 (2011).

    Google Scholar 

  64. E.M. Rodrigues, E.R. Souza, J.H.S.K. Monteiro, R.D.L. Gaspar, I.O. Mazali, and F.A. Sigoli, J. Mater. Chem. 22, 24109 (2012).

    Article  Google Scholar 

  65. C. Fu, G. Li, M. Zhao, L. Yang, J. Zheng, and L. Li, Inorg. Chem. 51, 5869 (2012).

    Article  Google Scholar 

  66. L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, and X. Kong, J. Phys. Chem. B 108, 16697 (2004).

    Article  Google Scholar 

  67. M. Giarola, A. Sanson, A. Rahman, G. Mariotto, M. Bettinelli, A. Speghini, and E. Cazzanelli, Phys. Rev. B 83, 224302 (2011).

    Article  Google Scholar 

  68. F.X. Zhang, J.W. Wang, M. Lang, J.M. Zhang, R.C. Ewing, and L.A. Boatner, Phys. Rev. B 80, 184114 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yahiaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahiaoui, Z., Hassairi, M.A. & Dammak, M. Synthesis and Optical Spectroscopy of YPO4:Eu3+ Orange–Red Phosphors. J. Electron. Mater. 46, 4765–4773 (2017). https://doi.org/10.1007/s11664-017-5401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5401-4

Keywords

Navigation