Skip to main content

Advertisement

Log in

Temperature-and Composition-Dependent Band Gap Energy and Electron–Phonon Coupling in InAs1−xSbx Semiconductors Alloys for Infrared Photodetection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper makes an improvement on the determination of the temperature, bowing parameter, and antimony (Sb) composition effects on the fundamental band gap energy of InAs1−xSbx ternary alloys for infrared (IR) photodetection. The present study was carried out in a broader temperature range from cryogenic to room temperature for the entire alloy range, and a reasonable analysis has also been carried out. Meanwhile, a proposed expression for the band gap bowing parameter temperature dependence has been established. The optical cut-off wavelength can be further tuned over a significant range up to 14 μm or more by altering the stoichiometry of InAs1−xSbx alloys. The three Varshni and Bose–Einstein thermodynamic parameters were found to exhibit a parabolic trend with Sb composition. Consequently, the quadratic equations relating these parameters to Sb composition were derived. The relatively weak band gap temperature coefficient reported here is hoped to offer an improvement on infrared photodetector (IR-PD) stability. Also, the average phonon energy and the corresponding electron–phonon coupling interaction strength were investigated versus Sb composition. The available experimental results were used, where possible, to confirm our theoretical estimates, and the agreement is satisfactory. We expect that the present work will be helpful in designing and improving the photodetection properties of IR optoelectronics devices. Additionally, it provides a firm basis for our forthcoming determination of the electronic band structure properties of InAs1−xSbx based superlattices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Michalczewski, D. Benyahia, J. Jureńczyk, D. Stępień, A. Kębłowski, J. Boguski, J. Rutkowski, and J. Piotrowski, High operating temperature LWIR and VLWIR InAs1−xSbx optically immersed photodetectors grown on GaAs substrates. Infrared Phys. Technol. 97, 116 (2019).

    Article  Google Scholar 

  2. M.R. Biefeld, The metal-organic chemical vapor deposition and properties of III–V antimony-based semiconductor materials. Mater. Sci. Eng. R Rep. 36, 105 (2002).

    Article  Google Scholar 

  3. W. Dobbelaere, J. De Boeck, C. Bruynserede, R. Mertens, and G. Borghs, Electron, InAsSb light emitting diodes and their applications to infrared gas sensors. Electron. Lett. 10, 890 (1993).

    Article  Google Scholar 

  4. S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, 1st ed., (Wiley: New Jersey, 2009).

    Book  Google Scholar 

  5. S.V. Ivanov, A.N. Semenov, V.A. Solovev, O.G. Lyublinskaya, Y.V. Terentev, B.. Ya.. Meltser, L.G. Prokopova, A.A. Sitnikova, A.A. Usikova, A.A. Toropov, and P.S. Kopev, Molecular beam epitaxy of type II InSb/InAs nanostructures with InSb sub-monolayers. J. Cryst. Growth. 278, 72 (2005).

    Article  CAS  Google Scholar 

  6. H. Xie, H. Lin, Z. Zhou, Z. Wen, Y. Sun, J. Hao, S. Hu, and N. Dai, Room-temperature InAsSb pBin detectors for mid-infrared application. Infrared Phys. Technol. 128, 104475 (2023).

    Article  CAS  Google Scholar 

  7. H.J. Lee, S.Y. Ko, Y.H. Kim, and J. Nah, Surface leakage current reduction of InAsSb nBn MWIR HOT detector via hydrogen peroxide treatment. Infrared Phys. Technol. 112, 103597 (2021).

    Article  CAS  Google Scholar 

  8. G. Deng, W. Yang, X. Gong, and Y. Zhang, High-performance uncooled InAsSb-based pCBn mid-infrared photodetectors. Infrared Phys. Technol. 105, 103260 (2020).

    Article  CAS  Google Scholar 

  9. D. Benyahia, K. Michalczewski, A. Kębłowski, P. Martyniuk, J. Piotrowski, and A. Rogalski, Investigation on the InAs1−xSbx epilayers growth on GaAs (001) substrate by molecular beam epitaxy. J. Semicond. 39, 033003 (2018).

    Article  Google Scholar 

  10. D. Wang, D. Donetsky, G. Kipshidze, Y. Lin, L. Shterengas, G. Belenky, W. Sarney, and S. Svensson, Metamorphic InAsSb-based barrier photodetectors for the long wave infrared region. Appl. Phys. Lett. 103, 051120 (2013).

    Article  Google Scholar 

  11. G. Belenky, G. Kipshidze, D. Donetsky, S.P. Svensson, W.L. Sarney, H. Hier, L. Shterengas, D. Wang, and Y. Lin, Effects of carrier concentration and phonon energy on carrier lifetime in type-2 SLS and properties of InAs1−xSbx alloys. Infrared Technol. Appl. XXXVII, 318 (2011).

    Google Scholar 

  12. G. Belenky, D. Donetsky, G. Kipshidze, D. Wang, L. Shterengas, W.L. Sarney, and S.P. Svensson, Properties of unrelaxed InAs1−xSbx alloys grown on compositionally graded buffers. Appl. Phys. Lett. 99, 141116 (2011).

    Article  Google Scholar 

  13. V.K. Dixit, B. Bansal, V. Venkataraman, H.L. Bhat, and G.N. Subbanna, Structural, optical, and electrical properties of bulk single crystals of InAsxSb1−x grown by rotatory Bridgman method. Appl. Phys. Lett. 81, 1630 (2002).

    Article  CAS  Google Scholar 

  14. J.C. Woolley, and J. Warner, Optical energy-gap variation in InAs–InSb alloys. Can. J. Phys. 42, 1879 (1964).

    Article  CAS  Google Scholar 

  15. N.J. Ramer, and A.M. Rappe, Virtual-crystal approximation that works: locating a compositional phase boundary in Pb(Zr1−xTix)O3. Phys. Rev. B. 62, R743 (2000).

    Article  CAS  Google Scholar 

  16. J.E. Bernard, and A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys. Rev. B. 36, 3199 (1987).

    Article  CAS  Google Scholar 

  17. S. Tomasuloa, C.A. Affouda, N.A. Mahadik, M.E. Twigg, M.K. Yakes, and E.H. Aifer, Sb-incorporation in MBE-grown metamorphic InAsSb for long-wavelength infrared applications. J. Vac. Sci. Technol. 36, 02D108 (2018).

    Article  Google Scholar 

  18. Y. Lin, D. Donetsky, D. Wang, D. Westerfeld, G. Kipshidze, L. Shterengas, W.L. Sarney, S.P. Svensson, and G. Belenky, Development of bulk InAsSb alloys and barrier heterostructures for long-wave infrared detectors. J. Electron. Mater. 44, 3360 (2015).

    Article  CAS  Google Scholar 

  19. P.T. Webster, N.A. Riordan, S. Liu, E.H. Steenbergen, R.A. Synowicki, Y.-H. Zhang, and S.R. Johnson, Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy. J. Appl. Phys. 118, 245706 (2015).

    Article  Google Scholar 

  20. P.T. Webster, N.A. Riordan, S. Liu, E.H. Steenbergen, R.A. Synowicki, Y.-H. Zhang, and S.R. Johnson, Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry. Appl. Phys. Lett. 06, 061907 (2015).

    Article  Google Scholar 

  21. S.P. Svensson, W.L. Sarney, H. Hier, Y. Lin, D. Wang, D. Donetsky, L. Shterengas, G. Kipshidze, and G. Belenky, Band gap of InAs1−xSbx with native lattice constant. Phys. Rev. B. 86, 245205 (2012).

    Article  Google Scholar 

  22. I. Vurgaftman, J. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815 (2001).

    Article  CAS  Google Scholar 

  23. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica. 34, 149 (1967).

    Article  CAS  Google Scholar 

  24. R. Pässler, Semi-empirical descriptions of temperature dependences of band gaps in semiconductors. Phys. Status Solidi C. 236, 710 (2003).

    Article  Google Scholar 

  25. Y. Lin, D. Wang, D. Donetsky, L. Shterengas, G. Kipshidze, G. Belenky, S.P. Svensson, W.L. Sarney, and H.S. Hier, Conduction-and valence-band energies in bulk InAs1−xSbx and type II InAs1−xSbx/InAs strained-layer superlattices. J. Electron. Mater. 42, 918 (2013).

    Article  CAS  Google Scholar 

  26. K. Murawski, E. Gomółka, M. Kopytko, K. Grodecki, K. Michalczewski, Ł Kubiszyn, W. Gawron, P. Martyniuk, A. Rogalski, and J. Piotrowski, Band gap energy determination of InAsSb epilayers grown by molecular beam epitaxy on GaAs substrates. Prog. Natl. Sci. Mater. Int. 29, 472 (2019).

    Article  CAS  Google Scholar 

  27. S. Suchalkin, J. Ludwig, G. Belenky, B. Laikhtman, G. Kipshidze, Y. Lin, and L. Shterengas, Electronic properties of unstrained unrelaxed narrow gap InAsxSb1−x alloys. J. Phys. D Appl. Phys. 49, 105101 (2016).

    Article  Google Scholar 

  28. J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, and M. Razeghi, Long-wavelength InAsSb photoconductors operated at near room temperatures (200–300 K). Appl. Phys. Lett. 68, 99 (1996).

    Article  CAS  Google Scholar 

  29. I.A. Vainshtein, A.F. Zatsepin, and V.S. Kortov, Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap. Phys. Solid State 41, 905 (1999).

    Article  CAS  Google Scholar 

  30. B. Bhavtosh, V.K. Dixit, V. Venkataraman, and H.L. Bhat, Temperature dependence of the energy gap and free carrier absorption in bulk InAs0.05Sb0.95 single crystals. Appl. Phys. Lett. 82, 4720 (2003).

    Article  Google Scholar 

  31. Z.M. Fang, K.Y. Ma, D.H. Jaw, R.M. Cohen, and G.B. Stringfellow, Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy. J. Appl. Phys. 67, 7034 (1990).

    Article  CAS  Google Scholar 

  32. H.H. Wieder, and A.R. Clawson, Photoelectronic properties of InAs0.07Sb0.93 films. Thin Solid Films. 15, 217 (1973).

    Article  CAS  Google Scholar 

Download references

Funding

The author declares that this research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author contributed to: Conceptualization, Investigation, Data collection and analysis, Methodology, Software, writing–original draft of the manuscript, review & editing. The corresponding author read and approved the final manuscript.

Corresponding author

Correspondence to Abderrazak Boutramine.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutramine, A. Temperature-and Composition-Dependent Band Gap Energy and Electron–Phonon Coupling in InAs1−xSbx Semiconductors Alloys for Infrared Photodetection. J. Electron. Mater. 52, 6031–6041 (2023). https://doi.org/10.1007/s11664-023-10546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10546-z

Keywords

Navigation