Skip to main content
Log in

Optoelectronic and Hydrogen Gas-Sensing Applications of Ultrasonically Fabricated ZnO-Au Nanoparticle-Decorated MWCNTs

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO)-based nanocomposites had been realized for promising photocatalytic and sensing applications. We have obtained multi-walled carbon nanotubes with a gold and ZnO (MWCNT/ZnO/Au) nanocomposite via ultrasonic assistance and studied them for photocatalytic degradation of methylene blue as well as for hydrogen gas sensing. Initially, the structural studies, conducted with x-ray diffraction (XRD) patterns of the specimens, indicated the hexagonal graphite crystal system of the MWCNT and a hexagonal wurtzite structure of ZnO existing in the nanocomposite. Transmission electron microscopy results indicated that the ZnO nanoparticles with an average size of 12 nm and 6-nm-sized gold nanoparticles formed on the surface of micrometer-sized long and 20-nm to 30-nm thick MWCNTs. UV–vis absorbance spectroscopic studies revealed the quantum confinement from the ZnO nanoparticles and plasmonically enhanced absorbance originating from the Au nanoparticles in the nanocomposite. Photoluminescence confirmed the inhibition of electron–hole pair recombination via the composite formation. Photocatalytic methylene blue degradation could achieved 99% efficacy with the MWCNT/ZnO/Au photocatalyst under a white light-emitting diode, and the tricomponent photocatalyst also showed better recyclability. Gas-sensing experiments conducted with the nanocomposite exhibited a low-temperature hydrogen gas sensitivity and showed the highest response at 200°C with excellent selectivity for hydrogen gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Dongjie, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng, R. Zhang, L. Wang, H. Liu, Y. Liu, and R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review. J. Clean. Prod. 268, 121725 (2020).

    Article  Google Scholar 

  2. J. Lau Yien, N.M. Mubarak, M. Juey Yee, L. Sie Yon, C. Han Bing, M. Khalid, and E.C. Abdullah, An overview of functionalised carbon nanomaterial for organic pollutant removal. J. Ind. Eng. Chem. 67, 175 (2018).

    Article  Google Scholar 

  3. D. Yingjie, N. Zhang, C. Xing, Q. Cui, and Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223, 12 (2019).

    Article  Google Scholar 

  4. G. Nisha, K. Narasimhulu, and Y. Pydi Setty, Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 198, 1602 (2018).

    Article  Google Scholar 

  5. D. Chunhao, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L. Luo, and X. Zhang, Current progress in remediation of chlorinated volatile organic compounds: a review. J. Ind. Eng. Chem. 62, 106 (2018).

    Article  Google Scholar 

  6. Y. Deyou, L. Li, M. Wu, and J.C. Crittenden, Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B 251, 66 (2019).

    Article  Google Scholar 

  7. P. Yunhong, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, and Z. Li, Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal–organic frameworks (MOFs). J. Chem. Eng. 337, 351 (2018).

    Article  Google Scholar 

  8. N. Meena, T.C. Zhang, and D. KumarZ, Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: strategies to improve photocatalytic activity. Sci. Total Environ. 767, 144896 (2021).

    Article  Google Scholar 

  9. A. Hassan, A. Mahmood, J. Lee, K. Ki-Hyun, P. Jae-Woo, and A.C.K. Yip, Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res. 12(5), 955 (2019).

    Article  Google Scholar 

  10. R. Asma, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, and M. Maqbool, Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 97, 111 (2021).

    Article  Google Scholar 

  11. S.T. Craig and D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178 (1990).

    Article  Google Scholar 

  12. W.M. Ralph, and S.R. McEvoy, Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide. J. Photochem. Photobiol. A 64(2), 231 (1992).

    Article  Google Scholar 

  13. F.M. Sher Bahadar Khan, M.M. Rahman, A. Jamal, A.M. Asiri, and M.M. Abdullah, Synthesis, characterizations, photocatalytic and sensing studies of ZnO nanocapsules. Appl. Surf. Sci. 258(2), 672 (2011).

    Article  Google Scholar 

  14. M. Govindaraj, S. Babu, and R. Rathinam, Integrated electrocoagulation–photoelectrocatalytic oxidation for effective treatments of aqueous solution bisphenol-A using green-synthesized ZnO nanoparticles. Chem. Pap. 77, 169 (2023).

    Article  CAS  Google Scholar 

  15. S. Banumathi, J. Uma, A. Ravi, B. Balraj, C. Siva, P. Ilanchezhiyan, and G. Mohan Kumar, Rapid sun-light driven photocatalytic functions of 3D rGO/ZnO/Ag heterostructures via improved charge transfer kinetics. J. Mater. Res. Technol. 10, 1301 (2021).

    Article  CAS  Google Scholar 

  16. H. Ting-Jen and H. Cheng-Liang, Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles. Sens. Actuators B Chem. 131(2), 572 (2008).

    Article  Google Scholar 

  17. B. Garam, I.S. Jeon, M. Jang, W. Song, S. Myung, J. Lim, S.S. Lee, J. Ha-Kyun, P. Chong-Yun, and A. Ki-Seok, Complementary dual-channel gas sensor devices based on a role-allocated ZnO/graphene hybrid heterostructure. ACS Appl. Mater. Interfaces 11(18), 16830 (2019).

    Article  Google Scholar 

  18. P.J. Cao, Q.G. Huang, S.T. Navale, M. Fang, X.K. Liu, Y.X. Zeng, W.J. Liu, F.J. Stadler, and Y.M. Lu, Integration of mesoporous ZnO and Au@ ZnO nanospheres into sensing device for the ultrasensitive CH3COCH3 detection down to ppb levels. Appl. Surf. Sci. 518, 146223 (2020).

    Article  CAS  Google Scholar 

  19. C.P. Singh, and S. Bhattacharya, Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: a review. Int. J. Hydrogen Energy. 44(47), 26076 (2019).

    Article  Google Scholar 

  20. S. Garg, V. Mishra, L.F. Vega, R. Shyam Sharma, and L.F. Dumée, Hydrogen biosensing: prospects, parallels, and challenges. Ind. Eng. Chem. Res. 62(11), 4676 (2023).

    Article  CAS  Google Scholar 

  21. C. Kyo-Sang and C. Sung-Pil, Effect of structure morphologies on hydrogen gas sensing by ZnO nanotubes. Mater. Lett. 230, 48 (2018).

    Article  Google Scholar 

  22. J. Haocheng, W. Zeng, and Y. LiZ, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664 (2019).

    Article  Google Scholar 

  23. R. Qiang, C. Yan-Qiang, D. Arulraj, C. Liu, D. Wu, L. Wei-Ming, and L. Ai-Dong, Resistive-type hydrogen sensors based on zinc oxide nanostructures. J. Electrochem. Soc. 167(6), 067528 (2020).

    Article  Google Scholar 

  24. R. Florian, V. Postica, F. Schütt, Y.K. Mishra, A.S. Nia, M.R. Lohe, X. Feng, R. Adelung, and O. Lupan, Highly selective and ultra-low power consumption metal oxide based hydrogen gas sensor employing graphene oxide as molecular sieve. Sens. Actuators B Chem. 320, 128363 (2020).

    Article  Google Scholar 

  25. C. Siva, A. Vijay, G. Mohan Kumar, M. Alagiri, J. Thiruvadigal, and M. Rathinam, Three-dimensional (3D) flower-like nanoarchitectures of ZnO-Au on MWCNTs for visible light photocatalytic applications. Appl. Surf. Sci. 449, 631 (2018).

    Article  Google Scholar 

  26. H. Farzaneh, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, and D. Wen, Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol. Mater. Sci. Semicond. Process. 83, 175 (2018).

    Article  Google Scholar 

  27. H.K. Muna, H.T. Hussein, and A.M. Abdul Hussein, Study of the effect of CNTs, and (CNTs-ZnO) on the porous silicon as sensor for acetone gas detection. Optik 259, 168825 (2022).

    Article  Google Scholar 

  28. T. Dana, A. Popa, M. Stan, M. Stefan, G. Vlad, S. Ulinici, and G. Baisan, Visible-light-driven photocatalytic degradation of different organic pollutants using Cu doped ZnO-MWCNT nanocomposites. J. Alloys Compd. 866, 159010 (2021).

    Article  Google Scholar 

  29. M.K.A. Mustafa, Carbon nanotubes loaded ZnO/Ag ternary nanohybrid with improved visible light photocatalytic activity and stability. Optik 217, 164867 (2020).

    Article  Google Scholar 

  30. Q.A. Drmosh, A.H. Hendi, M.K. Hossain, Z.H. Yamani, R.A. Moqbel, A. Hezam, and M.A. Gondal, UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection. Sens. Actuators B Chem. 290, 666 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Arul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arul, P., Vivek, C., Balraj, B. et al. Optoelectronic and Hydrogen Gas-Sensing Applications of Ultrasonically Fabricated ZnO-Au Nanoparticle-Decorated MWCNTs. J. Electron. Mater. 52, 5264–5271 (2023). https://doi.org/10.1007/s11664-023-10495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10495-7

Keywords

Navigation