Skip to main content
Log in

Cerium-Doped Bi2S3 Thin Films Fabricated by Nebulizer-Assisted Spray Pyrolysis Method for Photodetector Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the performances of highly sensitive Ce-doped Bi2S3 thin film-based photodetectors is discussed. The Bi2S3:Ce thin films were successfully coated by using the nebulizer spray pyrolysis method on glass substrates with varying Ce concentrations of 0%, 2%, 4%, 6%, and 8%. Furthermore, the physical properties such as crystalline size, morphology and optical response of Bi2S3:Ce thin films were investigated through x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), atomic force microscopy, optical absorption spectrophotometry, and photoluminescence spectroscopy (PL). The XRD study showed that 4% Ce-doped Bi2S3 film shows higher crystallinity. UV–visible studies showed that the absorption spectrum has a direct electronic transition with an energy gap of about 1.68 eV. The morphological studies revealed that the Bi2S3:Ce samples showed uniformly distributed nanoflakes. The 4% Ce-doped Bi2S3 film photodetector exhibited high responsivity (R) and detectivity (D*) and showed a fast photoresponse for about 5 s and 2.6 s with the external quantum efficiency (EQE) of 435%, which makes it highly suitable as a high-performance photodetector.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.S. Li, Semiconductor Physical Electronics (New York, NY: Springer, 2007), pp. 381–457.

    Google Scholar 

  2. R. Saran and R.J. Curry, Nat. Photonics 10, 81 (2016).

    Article  CAS  Google Scholar 

  3. F. Igbari, Z.K. Wang, and L.S. Liao, Adv. Energy Mater. 9, 1803150 (2019).

    Article  Google Scholar 

  4. W. Yantasee, Y. Lin, K. Hongsirikarn, G.E. Fryxell, R. Addleman, and C. Timchalk, Environ. Health Perspect. 115, 1683 (2007).

    Article  CAS  Google Scholar 

  5. C.A. Hoffman, J.R. Meyer, F.J. Bartoli, A. Di Venere, X.J. Yi, C.L. Hou, H.C. Wang, J.B. Ketterson, and G.K. Wong, Phys. Rev. B 48, 11431 (1993).

    Article  CAS  Google Scholar 

  6. Y. Guo, F. Pan, M. Ye, X. Sun, Y. Wang, J. Li, X. Zhang, H. Zhang, Y. Pan, Z. Song, J. Yang, and J. Lu, ACS Appl. Mater. Interfaces 9, 23128 (2017).

    Article  CAS  Google Scholar 

  7. D.S. Choi, A.A. Balandin, M.S. Leung, G.W. Stupian, N. Presser, S.W. Chung, J.R. Heath, A. Khitun, and K.L. Wang, Appl. Phys. Lett. 89, 141503 (2006).

    Article  Google Scholar 

  8. V. Chis, G. Benedek, P.M. Echenique, and E.V. Chulkov, Phys. Rev. B Condens. Matter Mater. Phys. 87, 075412 (2013).

    Article  Google Scholar 

  9. Y. Yu, W. Wang, W. Li, G. Wang, Y. Wang, Z. Lu, S. Li, W. Zhao, Y. Li, T. Liu, and X. Yan, Front. Chem. 9, 832028 (2022).

    Article  Google Scholar 

  10. C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, Sci. Rep. 5, 11830 (2015).

    Article  Google Scholar 

  11. J. Yin, Z. Tan, H. Hong, J. Wu, H. Yuan, Y. Liu, C. Chen, C. Tan, F. Yao, T. Li, Y. Chen, Z. Liu, K. Liu, and H. Peng, Nat. Commun. 9, 3311 (2018).

    Article  Google Scholar 

  12. F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Science 357, 287 (2017).

    Article  CAS  Google Scholar 

  13. M. Pumera and Z. Sofer, Adv. Mater. 29, 1605299 (2017).

    Article  Google Scholar 

  14. H. Huang, X. Ren, Z. Li, H. Wang, Z. Huang, H. Qiao, P. Tang, J. Zhao, W. Liang, Y. Ge, J. Liu, J. Li, X. Qi, and H. Zhang, Nanotechnology 29, 235201 (2018).

    Article  Google Scholar 

  15. L. Shao, D. Zhou, N. Ding, R. Sun, W. Xu, N. Wang, S. Xu, D. Liu, and H. Song, ACS Sustain. Chem. Eng. 9, 4980 (2021).

    CAS  Google Scholar 

  16. J. Arumugam, A. George, A. Dhayal Raj, A. Albert Irudayaraj, R.L. Josephine, S. John Sundaram, T. Saad Algarni, A.M. Al Mohaimeed, B. Balasubramanian, and K. Kaviyarasu, Mater. Lett. 302, 130403 (2021).

    Article  CAS  Google Scholar 

  17. T. Sasikala, K. Shanmugasundaram, P. Thirunavukkarasu, J. Chandrasekaran, P. Vivek, R. Marnadu, M. Aslam Manthrammel, and S. Gunasekaran, Inorg. Chem. Commun. 130, 108701 (2021).

    Article  CAS  Google Scholar 

  18. X.H. Nguyen, H.N. Luong, H.A. Pham, N.M. Nguyen, and V.Q. Dang, RSC Adv. 11, 36340 (2021).

    Article  CAS  Google Scholar 

  19. R.S. Lokhande, S.R. Thakur, and P.A. Chate, Optik (Stuttgart). 219, 165230 (2020).

    Article  CAS  Google Scholar 

  20. K.D. Arun Kumar, S. Valanarasu, A. Kathalingam, and K. Jeyadheepan, Mater. Res. Bull. 101, 264 (2018).

    Article  CAS  Google Scholar 

  21. Z. Amara, M. Khadraoui, R. Miloua, A. Boukhachem, A. Ziouche, A. Nakrela, and A. Bouzidi, Phys. B Condens. Matter 585, 412121 (2020).

    Article  CAS  Google Scholar 

  22. J. Arumugam, A. George, A.D. Raj, A.A. Irudayaraj, R.L. Josephine, S.J. Sundaram, A.M. Al-Mohaimeed, W.A. Al-onazi, M.S. Elshikh, and K. Kaviyarasu, J. Alloys Compd. 863, 2 (2021).

    Article  Google Scholar 

  23. J. Molenda, A. Kulka, A. Milewska, W. Zajac, and K. Świerczek, Materials (Basel) 6, 1656 (2013).

    Article  CAS  Google Scholar 

  24. C.W. Huang, B.J. Lin, H.Y. Lin, C.H. Huang, F.Y. Shih, W.H. Wang, C.Y. Liu, and H.C. Chui, Nanoscale Res. Lett. 7, 1 (2012).

    Article  Google Scholar 

  25. K. Paulraj, S. Ramaswamy, N. Chidhambaram, H. Algarni, M. Shkir, and S. AlFaify, Superlattices Microstruct. 148, 106723 (2020).

    Article  CAS  Google Scholar 

  26. H. Demir, Ö. Şahin, O. Baytar, and S. Horoz, J. Mater. Sci. Mater. Electron. 31, 10347 (2020).

    Article  CAS  Google Scholar 

  27. M. Riahi, C. Martínez-Tomás, S. Agouram, A. Boukhachem, and H. Maghraoui-Meherzi, Thin Solid Films 626, 9 (2017).

    Article  CAS  Google Scholar 

  28. H. Yue, S. Chen, P. Li, C. Zhu, X. Yang, T. Li, and Y. Gao, Ionics (Kiel) 25, 3587 (2019).

    Article  CAS  Google Scholar 

  29. I.L.P. Raj, S. Valanarasu, S. Vinoth, N. Chidhambaram, R.S.R. Isaac, M. Ubaidullah, S.F. Shaikh, and B. Pandit, Sens. Actuators A Phys. 333, 113242 (2022).

    Article  CAS  Google Scholar 

  30. N.R. Yogamalar and A. Chandra Bose, Appl. Phys. A Mater. Sci. Process. 103, 33 (2011).

    Article  CAS  Google Scholar 

  31. Z. Banu Bahşi and A.Y. Oral, Opt. Mater. (Amst.) 29, 672 (2007).

    Article  Google Scholar 

  32. I.L. Poul Raj, S. Valanarasu, K. Hariprasad, J.S. Ponraj, N. Chidhambaram, V. Ganesh, H.E. Ali, and Y. Khairy, Opt. Mater. (Amst.) 109, 110396 (2020).

    Article  CAS  Google Scholar 

  33. C. Anastasescu, M. Zaharescu, D. Angelescu, C. Munteanu, V. Bratan, T. Spataru, C. Negrila, N. Spataru, and I. Balint, Sol. Energy Mater. Sol. Cells 159, 325 (2017).

    Article  CAS  Google Scholar 

  34. M.M. Nakata, T.M. Mazzo, G.P. Casali, F.A. La Porta, and E. Longo, Chem. Phys. Lett. 622, 9 (2015).

    Article  CAS  Google Scholar 

  35. M. Hadiyan, A. Salehi, and A. Koohi-Saadi, J. Electroceram. 42, 147 (2019).

    Article  CAS  Google Scholar 

  36. D.P. Joshi and K. Sen, Sol. Cells 9, 261 (1983).

    Article  CAS  Google Scholar 

  37. H. Albargi, Z.R. Khan, R. Marnadu, H.Y. Ammar, H. Algadi, A. Umar, I.M. Ashraf, and M. Shkir, J. King Saud Univ. Sci. 33, 101638 (2021).

    Article  Google Scholar 

  38. S. Rajeswari, M.M. Ibrahim, A.M. Al-Enizi, M. Ubaidullah, P. Arunachalam, B. Pandit, and S.F. Shaikh, J. Mater. Sci. Mater. Electron. 33(24), 19284 (2022).

    Article  CAS  Google Scholar 

  39. Z.R. Khan, M.S. Revathy, M. Shkir, A. Khan, M.A. Sayed, A. Umar, A.S. Alshammari, S. Vinoth, R. Marnadu, E.S. Yousef, H. Algarni, and S. Al Faify, Surf. Interfaces 28, 101586 (2022).

    Article  CAS  Google Scholar 

  40. S. Veeralingam and S. Badhulika, J. Alloys Compd. 885, 160954 (2021).

    Article  CAS  Google Scholar 

  41. S. Liu, S. Jiao, J. Zhang, H. Lu, D. Wang, S. Gao, J. Wang, and L. Zhao, Appl. Surf. Sci. 571, 151291 (2022).

    Article  CAS  Google Scholar 

  42. S. Dhar, T. Majumder, and S.P. Mondal, ACS Appl. Mater. Interfaces 8, 31822 (2016).

    Article  CAS  Google Scholar 

  43. W. Yin, J. Yang, K. Zhao, A. Cui, J. Zhou, W. Tian, W. Li, Z. Hu, and J. Chu, ACS Appl. Mater. Interfaces 12, 11797 (2020).

    Article  CAS  Google Scholar 

  44. A. Das Mahapatra and D. Basak, J. Alloys Compd. 797, 766 (2019).

    Article  CAS  Google Scholar 

  45. C.C.S. Maria, R.A. Patil, D.P. Hasibuan, C.S. Saragih, C.C. Lai, Y. Liou, and Y.R. Ma, Appl. Surf. Sci. 584, 152608 (2022).

    Article  CAS  Google Scholar 

  46. F.X. Liang, C.W. Ge, T.F. Zhang, W.J. Xie, D.Y. Zhang, Y.F. Zou, K. Zheng, and L.B. Luo, Nanophotonics 6, 494 (2017).

    Article  CAS  Google Scholar 

  47. Y. Liu, P. Chen, G. Dai, W. Su, Y. Sun, J. Hou, N. Zhang, G. Zhao, Y. Fang, and N. Dai, Phys. E Low Dimens. Syst. Nanostruct. 120, 114041 (2020).

    Article  CAS  Google Scholar 

  48. J. Chao, S. Xing, Z. Liu, X. Zhang, Y. Zhao, L. Zhao, and Q. Fan, Mater. Res. Bull. 98, 194 (2018).

    Article  CAS  Google Scholar 

  49. W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan, and H. Zhang, Nanoscale 10, 2404 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors from King Khalid University (KKU) are grateful to the Deanship of Scientific Research at KKU for funding to carry this work through the research groups program under grant number R.G.P. 2/322/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ganesh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, V., Yahia, I.S. Cerium-Doped Bi2S3 Thin Films Fabricated by Nebulizer-Assisted Spray Pyrolysis Method for Photodetector Applications. J. Electron. Mater. 52, 5901–5910 (2023). https://doi.org/10.1007/s11664-023-10482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10482-y

Keywords

Navigation