Skip to main content
Log in

Bonding Below 150°C Using Nano-Ag Film for Power Electronics Packaging

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Achieving high strength and reliable bonding below 150°C using Ag nanoparticle pastes is still a challenge. This work developed an organic-free nano-Ag multilayer film consisting of a compact layer and a loose layer using pulsed laser deposition (PLD). A high shear strength of 71.2 MPa was achieved with bonding at 150°C, well above the reported values. A value of 18.6 MPa was achieved even with bonding at 50°C, meeting the MIL-STD-883 K standard requirement. The shear strength of sintered joints was strongly dependent on the diffusion behavior and microstructure evolution of loose layers. The sub-10-nanometer grains and high quantity of lattice disorders in the Ag nanoparticles induced a high diffusion driving force, ensuring high-strength bonding inside the bondline. In addition, pre-bonding and nano-bump effects of the deposited compact layer enhanced the interfacial bonding between bondline and metalized surfaces. This work provides a promising method for robust die attachment below 150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Zhang, M. Wang, X. Li, Z. Ding, C. Ma, G.-Q. Lu, and Y. Mei, A method for improving the thermal shock fatigue failure resistance of IGBT modules. IEEE Trans. Power Electron. 35, 8532 (2020).

    Article  Google Scholar 

  2. H. Zhang, W. Wang, H. Bai, G. Zou, L. Liu, P. Peng, and W. Guo, Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications. J. Alloy. Compd. 774, 487 (2019).

    Article  CAS  Google Scholar 

  3. Z. Zhao, H. Zhang, G. Zou, H. Ren, W. Zhuang, L. Liu, and Y.N. Zhou, A predictive model for thermal conductivity of nano-Ag sintered interconnect for a SiC die. J. Electron. Mater. 48, 2811 (2019).

    Article  CAS  Google Scholar 

  4. C. Chen, Z. Zhang, C. Choe, D. Kim, S. Noh, T. Sugahara, and K. Suganuma, Improvement of the bond strength of Ag sinter-joining on electroless Ni/Au plated substrate by a one-step preheating treatment. J. Electron. Mater. 48, 1106 (2018).

    Article  Google Scholar 

  5. N.S. Mohd Zubir, H. Zhang, G. Zou, H. Bai, Z. Deng, B. Feng, A. Wu, L. Liu, and Y.N. Zhou, Large-area die-attachment sintered by organic-free Ag sintering material at low temperature. J. Electron. Mater. 48, 7562 (2019).

    Article  CAS  Google Scholar 

  6. W. Wang, G. Zou, Q. Jia, H. Zhang, B. Feng, Z. Deng, and L. Liu, Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics. Mater. Sci. Eng. A 793, 139894 (2020).

    Article  CAS  Google Scholar 

  7. M.-S. Kim and H. Nishikawa, Silver nanoporous sheet for solid-state die attach in power device packaging. Scr. Mater. 92, 43 (2014).

    Article  CAS  Google Scholar 

  8. C. Chen, S. Noh, H. Zhang, C. Choe, J. Jiu, S. Nagao, and K. Suganuma, Bonding technology based on solid porous Ag for large area chips. Scr. Mater. 146, 123 (2018).

    Article  CAS  Google Scholar 

  9. H. Luo, C. Cai, H. Li, in 2014 15th International Conference on Electronic Packaging Technology (2014), pp. 1370–1374.

  10. M. Wang, Y.-H. Mei, J. Jin, S. Chen, X. Li, and G.-Q. Lu, Pressureless sintered-silver die-attach at 180°C for power electronics packaging. IEEE Trans. Power Electron. 36, 12141 (2021).

    Article  Google Scholar 

  11. R. Zeiser, P. Wagner, J. Wilde, in 2012 IEEE 62nd Electronic Components and Technology Conference (2012), pp. 338–343.

  12. H. Zhang, G. Zou, L. Liu, Y. Li, H. Tong, Z. Sun, and Y.N. Zhou, A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution. Appl. Phys. A 122, 1 (2016).

    Article  Google Scholar 

  13. S. Wang, M. Li, H. Ji, and C. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scr. Mater. 69, 789 (2013).

    Article  CAS  Google Scholar 

  14. X. Liu, J. Li, L. Liu, P. Zhu, T. Zhao, R. Sun, in 2021 IEEE 71st Electronic Components and Technology Conference (2021), pp. 532–537

  15. S. Soichi and K. Suganuma, Low-temperature and low-pressure die bonding using thin Ag-flake and Ag-particle pastes for power devices. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 923 (2013).

    Article  CAS  Google Scholar 

  16. B. Feng, D. Shen, W. Wang, Z. Deng, L. Lin, H. Ren, A. Wu, G. Zou, L. Liu, and Y.N. Zhou, Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations. ACS Appl. Mater. Interfaces 11, 16972 (2019).

    Article  CAS  Google Scholar 

  17. L. Gopi Reddy, L. Tolbert, and B. Ozpineci, Power cycle testing of power switches: a literature survey. IEEE Trans. Power Electron. 30, 2465 (2014).

    Google Scholar 

  18. D.B. Geohegan, A.A. Puretzky, and D.J. Rader, Gas-phase nanoparticle formation and transport during pulsed laser deposition of Y1Ba2Cu3O7−d. Appl. Phys. Lett. 74, 3788 (1999).

    Article  CAS  Google Scholar 

  19. W.O. Siew, S.S. Yapl, T.K. Yong, C.H. Nee, and T.Y. Tou, Effects of phase explosion in pulsed laser deposition of nickel thin film and sub-micron droplets. Appl. Surf. Sci. 257, 2775 (2011).

    Article  CAS  Google Scholar 

  20. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, and Y.N. Zhou, Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. Open Surf. Sci. J. 3, 70 (2011).

    Article  CAS  Google Scholar 

  21. J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, and Y.N. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66, 582 (2012).

    Article  CAS  Google Scholar 

  22. Z. Wu, J. Cai, J. Wang, Z. Geng, and Q. Wang, Low-temperature Cu-Cu bonding using silver nanoparticles fabricated by physical vapor deposition. J. Electron. Mater. 47, 988 (2017).

    Article  Google Scholar 

  23. W. Guo, Z. Zeng, X. Zhang, P. Peng, and S. Tang, Low-temperature sintering bonding using silver nanoparticle paste for electronics packaging. J. Nanomater. 2015, 1 (2015).

    Google Scholar 

  24. H. Ren, G. Zou, Z. Zhao, M. Wan, H. Zhang, Q. Jia, and L. Liu, High-reliability wireless packaging for high-temperature SiC power device sintered by novel organic-free nanomaterial. IEEE Trans. Compon. Packag. Manuf. Technol. 10, 1953 (2020).

    Article  CAS  Google Scholar 

  25. A. Bajwa, E. Möller, J. Wilde, in 2015 IEEE 65th Electronic Components and Technology Conference (2015), pp. 2168–2174.

  26. Z. Zhang, C. Chen, A. Suetake, M.-C. Hsieh, and K. Suganuma, Reliability of Ag sinter-joining die attach under harsh thermal cycling and power cycling tests. J. Electron. Mater. 50, 6597 (2021).

    Article  CAS  Google Scholar 

  27. A. Otto, T. Schröder, R. Dudek, W.-S. Wang, M. Baum, M. Wiemer, R. Döring, J.J. Kurian, K. Murayama, and K. Oi, Evaluation of Ag-sinter and CuSn-TLP based joining technologies on lead frame. PCIM Europe 2018, 1 (2018).

    Google Scholar 

  28. F. Wakai, M. Yoshida, Y. Shinoda, and T. Akatsu, Coarsening and grain growth in sintering of two particles of different sizes. Acta Mater. 53, 1361 (2005).

    Article  CAS  Google Scholar 

  29. Y. Wu, G. Zou, S. Wang, W. Guo, H. Zhang, P. Peng, B. Feng, and L. Liu, Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging. Appl. Surf. Sci. 603, 154422 (2022).

    Article  CAS  Google Scholar 

  30. M.-H. Roh, H. Nishikawa, S. Tsutsumi, N. Nishiwaki, K. Ito, K. Ishikawa, A. Katsuya, N. Kamada, and M. Saito, Low temperature bonding with high shear strength using micro-sized Ag particle paste for power electronic packaging. J. Mater. Sci. Mater. Electron. 29, 3800 (2018).

    Article  CAS  Google Scholar 

  31. Z. Deng, G. Zou, Q. Jia, B. Feng, H. Zhang, H. Ren, and L. Liu, Effect of Ag sintered bondline thickness on high-temperature reliability of SiC power devices. IEEE Trans. Compon. Packag. Manuf. Technol. 11, 1889 (2021).

    Article  CAS  Google Scholar 

  32. C. Chen, Y. Gao, Z.-Q. Liu, and K. Suganuma, 3D pyramid-shape Ag plating assisted interface connection growth of sinter micron-sized Ag paste. Scr. Mater. 179, 36 (2020).

    Article  CAS  Google Scholar 

  33. Z.Z. Fang and H. Wang, Densification and grain growth during sintering of nanosized particles. Int. Mater. Rev. 53, 326 (2013).

    Article  Google Scholar 

  34. Q. Jiang, S.H. Zhang, and J.C. Li, Grain size-dependent diffusion activation energy in nanomaterials. Solid State Commun. 130, 581 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 52075287, 52275346) and Tsinghua University Initiative Scientific Research Program (20221080070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Zou, G., Zhang, H. et al. Bonding Below 150°C Using Nano-Ag Film for Power Electronics Packaging. J. Electron. Mater. 52, 3903–3913 (2023). https://doi.org/10.1007/s11664-023-10358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10358-1

Keywords

Navigation