Skip to main content
Log in

Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper presents a first-principles investigation of the energy bandgaps of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS semiconductor alloys in zinc-blende crystals. The theoretical analysis is based on the full-potential linearized augmented plane wave method within both generalized gradient and local density approximations. Tran–Blaha-modified Becke–Johnson exchange potential was invoked to accurately provide bandgaps and their bowing parameters. A moderate nonlinear dependence with average bowing parameters around b ~ 0.49 eV for Cd1−xZnxTe, b ~ 0.68 eV Cd1−xZnxS, and b ~ 0.63 eV for Cd1−xZnxSe was found. The origin of the nonlinearity is discussed in light of Zunger’s approach to conclude that it arises mainly from volume deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Zelaya-Angel, M. Becerril, J.G. Mendoza-Alvarez, L. Tirado, and H. Navarro-Contreras, On the bowing parameter in Cd1xZnxTe. J. Appl. Phys. 95, 6284 (2004).

    Article  CAS  Google Scholar 

  2. H.W. Yao, J.C. Erickson, H.B. Barber, R.B. James, and H. Hermon, Optical properties of Cd0.9Zn0.1Te studied by variable angle spectroscopic ellipsometry between 0.75 and 6.24 eV. J. Electron. Mater. 28, 760 (1999).

    Article  CAS  Google Scholar 

  3. J.H. Dinan and S.B. Qadri, Heteroepitaxial growth of ZnCdTe by molecular beam epitaxy. J. Vac. Sci. Technol. Vac. Surf. Films A 3, 851 (1985).

    Article  CAS  Google Scholar 

  4. B. Pellicary, J.P. Chamonal, G.L. Destefanis, and L. DiCiocio, Growth and characterization of LPE CdHgTe/CdZnTe/CdZnTe structure. SPIE Proc. 865, 22 (1988).

    Article  Google Scholar 

  5. M. Basol, V.K. Kapur, and M.L. Ferris, Low-cost technique for preparing Cd1−xZnxTe films and solar cells. J. Appl. Phys. 66, 1816 (1989).

    Article  CAS  Google Scholar 

  6. J.G. Hernandes, O. Zelaya, J.G. Mendoza-Alvares, E.L. Cruz, D.A. Pawlick, and D.D. Alred, Structure and optical characterization of ZnxCd1−xTe thin films prepared by the close spaced vapor transport method. J. Vac. Sci. Technol. Vac. Surf. Films A 9, 550 (1991).

    Article  Google Scholar 

  7. A. Aydinly, A. Compan, G.P. Contreras, and A. Mason, Polycrystalline Cd1−xZnxTe thin films on glass by pulsed laser deposition. Solid State Commun. 80, 465 (1991).

    Article  Google Scholar 

  8. G.G. Rusu, M. Rusu, and M. Girtan, Optical characterization of vacuum evaporated CdZnTe thin films deposited by a multilayer method. Vacuum 81, 1476 (2007).

    Article  CAS  Google Scholar 

  9. K.H. Kim, Y.H. Na, Y.J. Park, T.R. Jung, S.U. Kim, and J.K. Hong, Characterization of high-resistivity poly-CdZnTe thick films grown by thermal evaporation method. IEEE Trans. Nucl. Sci. 51, 3094 (2004).

    Article  CAS  Google Scholar 

  10. M. Becerril, O. Zelaya-Angel, R. Fragoso-Soriano, and L. Tirado-Mejia, Band gap energy in Zn-rich Zn1−xCdxTe thin films grown by r.f. sputtering. Rev. mexicana de física 50, 588 (2004).

    CAS  Google Scholar 

  11. Y. Jeon and H.S. Kang, Electro-optic coefficient measurements for ZnxCd1xTe single crystals at 1550 nm wavelength. Opt. Rev. 14, 373 (2007).

    Article  CAS  Google Scholar 

  12. D. Bagayoko, G.L. Zhao, L. Franklin, and E. Ekuma, Comments on "efficient band gap prediction for solids". Phys. Rev. Lett. 105, 196403 (2010).

    Article  Google Scholar 

  13. S. Stolyarova, F. Edelman, A. Chack, A. Berner, P. Werner, N. Zakharov, M. Vytrykhivsky, R. Beserman, R. Weil, and Y. Nemirovsky, Structure of CdZnTe films on glass. J. Phys. D Appl. Phys 41, 065402 (2008).

    Article  Google Scholar 

  14. T.L. Chu, S.S. Chu, C. Ferekides, and J. Britt, Films and junctions of cadmium zinc telluride. J. Appl. Phys. 71, 5635 (1992).

    Article  CAS  Google Scholar 

  15. K. Oettinger, D.M. Hofmann, A.L. Efros, B.K. Meyer, M. Salk, and K.W. Benz, Excitonic line broadening in bulk grown Cd1xZnxTe. J. Appl. Phys. 71(9), 4523 (1992).

    Article  CAS  Google Scholar 

  16. O. Mahammad Hussain, P. Sreedhara Reddy, B. Srinivasulu Naidu, S. Uthanna, and P. Jayarama Reddy, Characterization of thin film ZnCdS/CdTe solar cells. Semicond. Sci. Technol. 6, 690 (1990).

    Article  Google Scholar 

  17. Y. Yamamoto, T. Yamaguchi, Y. Dernizu, T. Tanaka, and A. Yoshida, Fabrication and characterization of CuIn(SxSe1x)2 thin films deposited by r.f. sputtering. Thin Solid Films 281–282, 372 (1996).

    Article  Google Scholar 

  18. C. Tian, R. Tang, S. Hu, W. Li, L. Feng, J. Zhang, and L. Wu, Comparative studies of CdZnS thin films at low zinc content prepared by vacuum evaporation and CBD. Adv. Mater. Res. 225–226, 784 (2011).

    Article  Google Scholar 

  19. J.H. Lee, W.C. Song, J.S. Yi, K.J. Yang, W.D. Han, and J. Hwang, Growth and properties of the Cd1xZnxS thin films for solar cell applications. Thin Solid Films 431–432, 349 (2003).

    Article  Google Scholar 

  20. M.S. Hossain, M.A. Islam, Q. Huda, M.M. Aliyu, T. Razykov, M.M. Alam, Z.A. AlOthman, K. Sopian, and N. Amin, Growth and properties of the Cd1−xZnxS thin films for solar cell applications. Thin Solid Films 548, 202 (2013).

    Article  CAS  Google Scholar 

  21. M.S. Hossain, M.A. Islam, M.M. Aliyu, P. Chelvanathan, T. Razykov, K. Sopian, and N. Amin, Effect of annealing on the properties of ZnxCd1xS thin film growth by RF magnetron co-sputtering. Energy Proc. 33, 214 (2013).

    Article  CAS  Google Scholar 

  22. J.-H. Lee, W.-C. Song, J.-S. Yi, K.-J. Yang, W.-D. Han, and J. Hwang, Growth and properties of the Cd1xZnxS thin films for solar cell applications. Thin Solid Films 431–432, 349 (2003).

    Article  Google Scholar 

  23. S.V. Borse, S.D. Chavhan, and R. Sharma, Growth, structural and optical properties of Cd1−xZnxS alloy thin films grown by solution growth technique (SGT). J. Alloys Compd. 436, 407 (2007).

    Article  CAS  Google Scholar 

  24. K.R. Murali and M. Balasubramanian, Characteristics of pulse plated CdxZn1xSe films. Curr. Appl. Phys. 10, 734 (2010).

    Article  Google Scholar 

  25. V. Kumar, K. Kahan, G. Singh, T.P. Sharma, and M. Hussain, ZnSe sintered films: growth and characterization. Appl. Surf. Sci. 253, 3543 (2007).

    Article  CAS  Google Scholar 

  26. J. Zhang, C. Wang, J. Shi, D. Wei, H. Zhao, and C. Ma, Solar selective absorber for emerging sustainable applications. Adv. Energy Sustain. Res. 3, 2100195 (2022).

    Article  Google Scholar 

  27. A.H. Ammar, Studies on some structural and optical properties of ZnxCd1xTe thin films. Appl. Surf. Sci. 201, 9 (2002).

    Article  CAS  Google Scholar 

  28. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: an augmented plane wave and local orbitals program for calculating crystal properties, edited by K. Schwarz, (Vienna University of Technology, Austria, 2001).

  29. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k_14.2 (Release 10/15/2014) An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Inst. of Physical and Theoretical Chemistry, Getreidemarkt 9/156, A-1060 Vienna/Austria, ISBN 3-9501031-1-2.

  30. J.P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  31. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  32. F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett 102, 226401 (2009).

    Article  Google Scholar 

  33. O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, and S.G. Loui, Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys. Rev. B 50, 10780 (1994).

    Article  CAS  Google Scholar 

  34. M. Fox, Optical properties of solids. Am. J. Phys. 70, 1269 (2002). https://doi.org/10.1119/1.1691372.

    Article  Google Scholar 

  35. W. Andreoni and K. Maschke, Pressure-induced structural transitions in partially ionic semiconductors: self-consistent pseudopotential approach to ZnSe. Phys. Rev. B 22, 4816 (1980).

    Article  CAS  Google Scholar 

  36. O. Madelung ed., Landolt Börnstein Numerical Data and Functional Relationships in Science and Technology. Vol. 17b (Berlin: Springer, 1982).

    Google Scholar 

  37. Y. Dou, R.G. Egdelly, D.S.L. Law, N.M. Harrison, and B.G. Searle, An experimental and theoretical investigation of the electronic structure of CdO. J. Phys. Condens. Matter. 10, 8447 (1998).

    Article  CAS  Google Scholar 

  38. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors. Graduate Texts in Physics (Berlin: Springer, 2010).

    Book  Google Scholar 

  39. R.R. Reddy, K. Rama Gopal, K. Narasimhulu, L. Siva Sankara Reddy, K. Raghavendra Kumar, G. Balakrishnaiah, and M. Ravi Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 473, 28 (2009).

    Article  CAS  Google Scholar 

  40. P. Reiss, M. Protiere, and L. Liang. Wiley-VCH Verlag GmbH & Co. KGaA. Single cell analysis: technologies and applications Dario Anselmetti (Ed.) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2009, pp. 284 ISBN: 978-3-527-31864-3. Eng. Life Sci. 9, 407–407 (2009).

    Article  Google Scholar 

  41. M. Oshikiri and F. Aryasetiawan, Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation. Phys. Rev. B 60, 10754 (1999).

    Article  CAS  Google Scholar 

  42. W.H. Strehlow and E.L. Cook, Compilation of energy band gaps in elemental and binary compound semiconductors and insulators. J. Phys. Chem. Ref. Data 2, 163 (1973). https://doi.org/10.1063/1.3253115.

    Article  CAS  Google Scholar 

  43. H.H. Gurel, O. Akinci, and H. Unlu, First principles calculations of Cd and Zn chalcogenides with modified Becke–Johnson density potential. Superlattices Microstruct. 51, 725 (2012).

    Article  Google Scholar 

  44. I. Khan, I. Ahmad, H.R. Aliabad, and M. Maqbool, DFT-mBJ studies of the band structures of the II–VI semiconductors. Mater. Today: Proc. 2(10), 5122 (2015).

    Google Scholar 

  45. A. Fleszar and W. Hanke, Electronic structure of IIB−VI semiconductors in the GW approximation. Phys. Rev. B 71, 045207 (2005).

    Article  Google Scholar 

  46. S. Biering and P. Schwerdtfeger, A comparative density functional study of the low-pressure phases of solid ZnX, CdX, and HgX: trends and relativistic effects. J. Chem. Phys. 136, 034504 (2012).

    Article  CAS  Google Scholar 

  47. O. Akınc, H.H. Gürel, and H. Ünlü, Semi-empirical tight binding modelling of CdSTe/CdTe, ZnSSe/ZnSe and ZnSSe/ CdSe heterostructures. Thin Solid Films 517, 2431 (2009).

    Article  Google Scholar 

  48. Z. Nourbakhsh, Structural, electronic and optical properties of ZnX and CdX compounds (X = Se, Te and S) under hydrostatic pressure. J. Alloys Compd. 505, 698 (2010).

    Article  CAS  Google Scholar 

  49. A.H. Ammar, Structural and optical properties of ZnxCd1xSe thin films. Phys. B 296, 312 (2001).

    Article  CAS  Google Scholar 

  50. J. Franc, P. Hlídek, P. Moravec, E. Belas, P. Hösch, L. Turjanska, and R. Varghová, Determination of energy gap in Cd1xZnxTe (x = 0–0.06). Semiconduct. Sci. Technol. 15, 561 (2000).

    Article  CAS  Google Scholar 

  51. H.C. Poon, Z.C. Feng, Y.P. Feng, and M.F. Li, Relativistic band structure of ternary II–VI semiconductor alloys containing Cd, Zn, Se and Te. J. Phys. Condens. Matter 7, 2783 (1995).

    Article  CAS  Google Scholar 

  52. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (New York: Wiley, 2009).

    Book  Google Scholar 

  53. H.A. Imad Khan, R. Aliabad, W. Ahmad, Z. Ali, and I. Ahmad, First principle optoelectronic studies of visible light sensitive CZT. Superlattices Microstruct. 63, 91 (2013).

    Article  Google Scholar 

  54. N. Korozlu, K. Colakoglu, and E. Deligoz, Structural, electronic, elastic and optical properties of CdxZn1−xTe mixed crystals. J. Phys. Condens. Matter 21, 175406 (2009).

    Article  CAS  Google Scholar 

  55. U. Verma, V. Thakur, P. Rajaram, and A.K. Shrivastava, Structural, morphological and optical properties of sprayed nanocrystalline thin films of Cd1xZnxS solid solution. Electron. Mater. Lett. 11, 46 (2015).

    Article  CAS  Google Scholar 

  56. R. Venugopal, P. Lin, and Y. Chen, Photoluminescence and Raman scattering from catalytically grown ZnxCd1xSe alloy nanowires. J. Phys. Chem. B 110, 11691 (2006).

    Article  CAS  Google Scholar 

  57. C.S. Schnohr, Compound semiconductor alloys: from atomic-scale structure to bandgap bowing. Appl. Phys. Rev. 2, 031304 (2015).

    Article  Google Scholar 

  58. O. Zelaya-Angel, J.G. Mendoza-Alvarez, M. Becerril, H. Navarro-Contreras, and L. Tirado-Mejia, On the bowing parameter in Cd1−xZnxTe. J. Appl. Phys. 95, 6284 (2004). https://doi.org/10.1063/1.1699493.

    Article  CAS  Google Scholar 

  59. L. Tirado-Mejia, J.L. Marin-Hurtado, and H. Ariza-Calderon, Influence of disorder effects on Cd1xZnxTe optical properties. Phys. Status Solidi B 220, 255 (2000).

    Article  CAS  Google Scholar 

  60. B. Bhattacharjee, S.K. Mandal, K. Chakrabarti, D. Ganguli, and S. Chaudhuri, Optical properties of Cd1−xZnxS nano-crystallites in sol–gel silica matrix. J. Phys. D Appl. Phys. 35, 2636 (2002). https://doi.org/10.1088/0022-3727/35/20/324.

    Article  CAS  Google Scholar 

  61. J. Van Vechten and T.K. Bergstresser, Electronic structures of semiconductor alloys. Phys. Rev. B 1, 3351 (1970).

    Article  Google Scholar 

  62. J.E. Bernard and A. Zunger, Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992 (1986).

    Article  CAS  Google Scholar 

  63. U. Lunz, J. Kuhn, F. Goschenhofer, S. Einfeldt, C.R. Becker, and G. Landwehr, Temperature dependence of the energy gap of zinc-blende CdSe and Cd1−xZnxSe epitaxial layers. J. Appl. Phys. 80, 6861 (1996). https://doi.org/10.1063/1.363753.

    Article  CAS  Google Scholar 

  64. D.S. Sutrave, G.S. Shahane, V.B. Patil, and L.P. Deshmukh, Micro-crystallographic and optical studies on Cd1−xZnxSe thin films. Mater. Chem. Phys. 65, 298 (2000). https://doi.org/10.1016/s0254-0584(00)00240-6.

    Article  CAS  Google Scholar 

  65. C.-H. Huang, C.-H. Yang, Y.-T. Shieh, and T.-L. Wang, Synthesis and properties of alloyed CdxZn1xSe core and manganese-doped CdxZn1xSe/ZnS core/shell nanocrystals. J. Alloys Compd. 748, 265 (2018).

    Article  CAS  Google Scholar 

  66. H. Benallali, T. Cremel, K. Hoummada, D. Mangelinck, R. André, S. Tatarenko, and K. Kheng, Atomic scale investigations on CdxZn1−xSe quantum dots: correlation between the composition and emission properties. Appl. Phys. Lett. 105, 053103 (2014). https://doi.org/10.1063/1.4891635.

    Article  CAS  Google Scholar 

  67. A.S. Hassanien, R. Neffati, and K.A. Aly, Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1xSe films: discussions on bandgap engineering, conduction and valence band positions. Optik 212, 164681 (2020).

    Article  CAS  Google Scholar 

  68. M. Yunus Akaltun, A. Yıldırım, A. Ates, and M. Yildırım, Zinc concentration effect on structural, optical and electrical properties of Cd1−xZnxSe thin films. Mater. Res. Bull. 47, 3390 (2012).

    Article  Google Scholar 

  69. A. John Peter and C.W. Lee, Electronic and optical properties of CdS/CdZnS nanocrystals. Chin. Phys. B 21, 087302 (2012).

    Article  Google Scholar 

  70. M.S. Hossain, M.A. Islam, M.M. Aliyu, P. Chelvanathan, T. Razykov, K. Sopian, and N. Amin, Effect of annealing on the properties of ZnxCd1−xS thin film growth by RF magnetron co-sputtering. Energy Proc. 33, 21 (2013).

    Article  Google Scholar 

  71. P. Kumar, A. Misra, D. Kumar, N. Dhama, T.P. Sharma, and P.N. Dixit, Structural and optical properties of vacuum evaporated CdxZn1−xS thin films. Opt. Mater. 27, 261 (2004).

    Article  CAS  Google Scholar 

  72. M. Li, J. Jiang, and L. Guo, Synthesis, characterization, and photoelectrochemical study of Cd1−xZnxS solid solution thin films deposited by spray pyrolysis for water splitting. Int. J. Hydrog. Energy 35, 7036 (2010).

    Article  CAS  Google Scholar 

  73. M. Celalettin Baykul and N. Orhan, Band alignment of Cd1−xZnxS produced by spray pyrolysis method. Thin Solid Films 518, 1925 (2010).

    Article  Google Scholar 

  74. I. Bziz, E. Atmani, N. Fazouan, and M. Aazi, First-principles calculations of structural, electronic and optical properties of CdTexS1x and Cd1xZnxS ternary alloys. Surf. Interfaces 24, 101126 (2021).

    Article  CAS  Google Scholar 

  75. M. Isik, M. Terlemezoglu, S. Isik, K. Erturk, and N.M. Gasanly, The effect of Zn concentration on the structural and optical properties of Cd1xZnxS nanostructured thin films. J. Mater. Sci. Mater. Electron. 32, 25225 (2021).

    Article  CAS  Google Scholar 

  76. M.A. Iqbal, M. Malik, A. Zahid, M.R. Islam, I.D. Arellano-Ramírez, and M. Al-Bahrani, Unveiling concentration effects on the structural and optoelectronic characteristics of Zn1xCdxS (x= 0, 025, 050, 075, 1) cubic semiconductors: a theoretical study. RSC Adv. 12(35), 22783 (2022).

    Article  CAS  Google Scholar 

  77. W. Jian-Chun, J. Zheng, C.L. Zacherl, W. Ping, Z.-K. Liu, and Xu. Rong, Hybrid functionals study of band bowing, band edges and electronic structures of Cd1xZnxS solid solution. J. Phys. Chem. C 115, 19741 (2011).

    Article  Google Scholar 

  78. T.-W. Zhang, C.-J. Zhu, C.-Z. Wang, and J. Li, Preparation and characterization of Cd1−xZnxS buffer layers for thin film solar cells. Rare Metals 32, 47 (2013).

    Article  Google Scholar 

  79. N. Bouarissa, F. Mezrag, and N. Turki-Kamoun, Disorder effect upon energy band gaps and carrier effective masses of ZnxCd1−xS. Eur. Phys. J. Plus 136, 724 (2021).

    Article  CAS  Google Scholar 

  80. S. Azizi, H. Rezagholipour Dizaji, and M.H. Ehsani, Structural and optical properties of Cd1xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes. Optik 127, 7104 (2016).

    Article  CAS  Google Scholar 

  81. A.J. Syllaios, P.-K. Liao, B.J. Greene, H.F. Schaake, H.-Y. Liu, and G. Westphal, Application of Urbach rule optical absorption to composition measurement of cd1−yZnyTe. J. Electron. Mater. 26, 567 (1997).

    Article  CAS  Google Scholar 

  82. D. Ohlmann, M. Mazilu, R. Levy, and B. Honerlage, Tunable optical nonlinearities in Cd1−xZnxTe ternary alloys. J. Appl. Phys. 82, 1355 (1997). https://doi.org/10.1063/1.365910.

    Article  CAS  Google Scholar 

  83. L. Tirado-Mejía, J.L. Marín-Hurtado, and H. Ariza-Calderón, Influence of disorder effects on Cd1–xZnxTe optical properties. Phys. Status Solidi B 220, 255 (2000).

    Article  Google Scholar 

  84. H. Yoon, M.S. Goorsky, B.A. Brunett, J.M. Van Scyoc, J.C. Lund, and R.B. James, Resistivity variation of semi-insulating Cd1xZnxTe in relationship to alloy composition. J. Electron. Mater. 28, 838 (1999).

    Article  CAS  Google Scholar 

  85. S.D. Chavhan, S. Senthilarasu, and S.-H. Lee, Annealing effect on the structural and optical properties of a Cd1xZnxS thin film for photovoltaic applications. Appl. Surf. Sci. 254, 4539 (2008).

    Article  CAS  Google Scholar 

  86. S.-H. Wei and S.B. Zhang, Structure stability and carrier localization in CdX(X=S, Se, Te) semiconductors. Phys. Rev. B 62, 6944 (2000).

    Article  CAS  Google Scholar 

  87. A. Mahmood, R. Shaista, U. Un Shah, E Ahmed Aziz, S. Ali, and Q. Raza, Ellipsometric analysis of Cd1xZnxSe thin films prepared by a thermal evaporation technique. Phys. Scr. 83, 065706 (2011).

    Article  Google Scholar 

  88. J. Zakrzewski, M. Malinski, A. Bachiri, and K. Strzałkowski, Photothermal determination of the optical and thermal parameters of CdxZn1−xSe mixed crystals. Mater. Sci. Eng. B 271, 115305 (2021).

    Article  CAS  Google Scholar 

  89. F.K. Mezrag, W. Mohamed, and N. Bouarissa, The effect of zinc concentration upon optical and dielectric properties of Cd1−xZnxSe. Phys. B Condens. Matter 405, 2272 (2010).

    Article  CAS  Google Scholar 

  90. C.S. Bagade, S.S. Mali, V.B. Ghanwat, K.V. Khot, P.B. Patil, S.D. Kharade, R.M. Mane, N.D. Desai, C.K. Hong, P.S. Patil, and P.N. Bhosale, A facile and low-cost strategy to synthesize Cd1−xZnxSe thin films for photoelectrochemical performance: effect of zinc content. RSC Adv. 5, 55658 (2015).

    Article  CAS  Google Scholar 

  91. T.C.M. Santhosh, K.V. Bangera, and G.K. Shivakumar, Band gap engineering of mixed Cd1−xZnx Se thin films. J. Alloys Compd. 703, 40 (2017).

    Article  CAS  Google Scholar 

  92. H.D. Dhaygude, S.K. Shinde, D.P. Dubal, N.B. Velhal, D.Y. Kim, and V.J. Fulari, Structural, optical, and photoelectrochemical properties of nanosphere-like CdXZn1XS synthesized by electrochemical route. Ionics 23, 223 (2017).

    Article  CAS  Google Scholar 

  93. I. Carreón-Moncada, L.A. González, M.I. Pech-Canul, and R. Ramírez-Bon, Cd1xZnxS thin films with low Zn content obtained by an ammonia-free chemical bath deposition process. Thin Solid Films 548, 270 (2013). https://doi.org/10.1016/j.tsf.2013.10.024.

    Article  CAS  Google Scholar 

  94. H. Duan, X. Chen, Y. Huang, X. Zhou, L. Sun, and W. Lu, Composition-dependent electronic properties, optical transitions, and anionic relaxations of Cd1−xZnxTe alloys from first principles. Phys. Rev. B 76, 035209 (2007).

    Article  Google Scholar 

  95. H. Algarni, N. Bouarissa, M. Ajmal Khan, O.A. Al-Hagan, and T.F. Alhuwaymel, Optical constants and exciton properties of ZnxCd1xS. Optik 193, 163022 (2019).

    Article  CAS  Google Scholar 

  96. N. Korozlu, K. Colakoglu, and E. Deligoz, The effects of concentration on the electronic and optical properties in CdxZn1−xS ternary alloys. Phys. Status Solidi B 247, 5 (2010).

    Article  Google Scholar 

  97. D. Patidar, N.S. Saxena, and T.P. Sharma, Structural, optical and electrical properties of CdZnS thin films. J. Mod. Opt. 55, 79 (2008).

    Article  CAS  Google Scholar 

  98. J. Sun, H.T. Wang, N.B. Ming, J. He, and Y. Tian, Optical properties of heterodiamond B2CN using first-principles calculations. Appl. Phys. Lett. 84, 4544 (2004).

    Article  CAS  Google Scholar 

  99. J. Sun, X.F. Zhou, Y.X. Fan, J. Chen, H.T. Wang, X. Guo, J. He, and Y. Tian, First-principles study of electronic structure and optical properties of heterodiamond BC2N. Phys. Rev. B 73(4), 045108 (2006).

    Article  Google Scholar 

  100. B.B. Dumre, R.J. Ellingson, and S.V. Khare, Effects of short-range order on phase equilibria and opto-electronic properties of ternary alloy ZnxCd1xTe. Sol. Energy Mater. Sol. Cells 248, 111971 (2022).

    Article  CAS  Google Scholar 

  101. L.A. Wahab, H.A. Zayed, and A.A. Abd El-Galil, Study of structural and optical properties of Cd1xZnxSe thin films. Thin Solid Films 520, 5195 (2012).

    Article  CAS  Google Scholar 

  102. N. Korozlu, K. Colakoglu, E. Deligoz, and Y.O. Ciftci, The structural, electronic and optical properties of CdxZn1xSe ternary alloys. Opt. Commun. 284, 1863–1867 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the General Directorate of Scientific Research and Technological Development of the Algerian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mimouni.

Ethics declarations

Conflict of interest

The corresponding author, Dr. K. Mimouni, certify that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimouni, K., Mokdad, N., Beladjal, K. et al. Energy Bandgap of Cd1−xZnxTe, Cd1−xZnxSe and Cd1−xZnxS Semiconductors: A First-Principles Analysis Based on Tran–Blaha–Modified Becke–Johnson Exchange Potential. J. Electron. Mater. 52, 4191–4201 (2023). https://doi.org/10.1007/s11664-023-10357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10357-2

Keywords

Navigation