Skip to main content

Advertisement

Log in

Delivery of Cisplatin Anti-cancer Drug by Si-Decorated Al24N24 Nanocage: DFT Evaluation of Electronic and Structural Features

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We investigated the potential application of Al24N24 nanocage (AlN-NC) as a drug delivery system for the anticancer drug cisplatin (CP) through density functional theory computations. Results indicate that CP drug very weakly interacts with the AlN-NC with the adsorption energy (AD-E) of around − 6.8 kcal/mol. This makes the AlN-NC inappropriate for the drug delivery. To overcome this problem, the AlN-NC has been decorated with Si impurity atoms. Decoration of the Si into the structure of the AlN-NC increased the AD-E of CP to − 33.4 kcal/mol. Based on the analysis of the partial density of states, the Si atom considerably contributed to the generation of the virtual orbitals of the Si-decorated AlN-NC (Si@AlN-NC), which showed that this atom was suitable for nucleophilic attack compared to the Al atoms. Finally, the adsorption performance and capacity of CP increased after decorating the Si, which made the AlN-NC more suitable for drug delivery. A mechanism of drug release was introduced into the cancerous tissues, which showed that, in cancerous cells with low pH, CP was significantly protonated, which led to the separation of CP from the surface of the Si@AlN-NC. The reaction nature of CP with the AlN-NC changed from covalent bonding in the natural environment to H-bonding in the acidic cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer. 5, 161–171 (2005). https://doi.org/10.1038/nrc1566.

    Article  CAS  Google Scholar 

  2. J. Zhang, D.S. Thomas, M.S. Davies, S.J. Berners-Price, and N. Farrell, Effects of geometric isomerism in dinuclear platinum antitumor complexes on aquation reactions in the presence of perchlorate, acetate and phosphate. J. Biol. Inorg. Chem. 10, 652–666 (2005). https://doi.org/10.1007/s00775-005-0013-5.

    Article  CAS  Google Scholar 

  3. E.L. Beard Jr., The american society of health system pharmacists. JONAS Healthc. Law Ethics Regul. 3, 78–79 (2001).

    Article  Google Scholar 

  4. X. Duan, C. He, S.J. Kron, and W. Lin, Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8, 776–791 (2016). https://doi.org/10.1002/wnan.1390.

    Article  CAS  Google Scholar 

  5. S. Dasari and P. Bernard Tchounwou, Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378 (2014). https://doi.org/10.1016/j.ejphar.2014.07.025.

    Article  CAS  Google Scholar 

  6. R.-D. Kortmann, B. Timmermann, R.E. Taylor, G. Scarzello, L. Plasswilm, F. Paulsen, B. Jeremic, A.K. Gnekow, K. Dieckmann, S. Kay, and M. Bamberg, Current and future strategies in radiotherapy of childhood low-grade glioma of the brain. Strahlenther. Onkol. 179, 509–520 (2003).

    Article  Google Scholar 

  7. L. Kong and G. Liu, Synchrotron-based infrared microspectroscopy under high pressure: An introduction. Matter Rad. Extrem. 6, 068202 (2021). https://doi.org/10.1063/5.0071856.

    Article  CAS  Google Scholar 

  8. R.A. Alderden, M.D. Hall, and T.W. Hambley, The discovery and development of cisplatin. J. Chem. Educ. 83, 728–734 (2006). https://doi.org/10.1021/ed083p728.

    Article  CAS  Google Scholar 

  9. F.H. Kasten, F.F. Strasser, and M. Turner, Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 207, 161–164 (1965).

    Article  CAS  Google Scholar 

  10. R. Oun, Y.E. Moussa, and N.J. Wheate, The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47, 6645–6653 (2018). https://doi.org/10.1039/c8dt00838h.

    Article  CAS  Google Scholar 

  11. X. Wang, C. Li, Y. Zhang, H.M. Ali, S. Sharma, R. Li, M. Yang, Z. Said, and X. Liu, Tribology of enhanced turning using biolubricants: a comparative assessment. Tribol. Inter. (2022). https://doi.org/10.1016/j.triboint.2022.107766.

    Article  Google Scholar 

  12. R. Langer, New methods of drug delivery. Science 249, 1527–1533 (1990).

    Article  CAS  Google Scholar 

  13. R.S. Shawgo, A.C.R. Grayson, Y. Li, and M.J. Cima, BioMEMS for drug delivery. Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002).

    Article  CAS  Google Scholar 

  14. M.H. Smolensky and N.A. Peppas, Chronobiology, drug delivery, and chronotherapeutics. Adv. Drug Deliv. Rev. 59, 828–851 (2007).

    Article  CAS  Google Scholar 

  15. S. Liu, B. Yang, Y. Wang, J. Tian, L. Yin, and W. Zheng, 2D/3D multimode medical image registration based on normalized cross-correlation. Appl. Sci. 12, 2828 (2022). https://doi.org/10.3390/app12062828.

    Article  CAS  Google Scholar 

  16. O. Pillai and R. Panchagnula, Polymers in drug delivery. Curr. Opin. Chem. Biol. 5, 447–451 (2001).

    Article  CAS  Google Scholar 

  17. D. Arcos and M. Vallet-Regi, Bioceramics for drug delivery. Acta Mater. 61, 890–911 (2013).

    Article  CAS  Google Scholar 

  18. C. Peetla, S. Vijayaraghavalu, and V. Labhasetwar, Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Adv. Drug Deliv. Rev. 65, 1686–1698 (2013).

    Article  CAS  Google Scholar 

  19. S. Hossen, M.K. Hossain, M. Basher, M. Mia, M. Rahman, and M.J. Uddin, Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J. Adv. Res. 15, 1–18 (2019).

    Article  CAS  Google Scholar 

  20. P.P. Karmali and D. Simberg, Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin. Drug Deliv. 8, 343–357 (2011).

    Article  CAS  Google Scholar 

  21. Y. Dang and J. Guan, Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med. 1, 10–19 (2020).

    Article  Google Scholar 

  22. W. Xu, C. Li, Y. Zhang, H.M. Ali, S. Sharma, R. Li, M. Yang, T. Gao, M. Liu, and X. Wang, Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int. J. Extrem. Manuf. (2022). https://doi.org/10.1088/2631-7990/ac9652.

    Article  Google Scholar 

  23. R. Li, Z. Du, X. Qian, Y. Li, J.-C. Martinez-Camarillo, L. Jiang, M.S. Humayun, Z. Chen, and Q. Zhou, High resolution optical coherence elastography of retina under prosthetic electrode. Quant. Image Med. Surg. 11, 918 (2021). https://doi.org/10.21037/qims-20-1137.

    Article  CAS  Google Scholar 

  24. H. Xu, Q. Wang, G. Fan, and X. Chu, Theoretical study of boron nitride nanotubes as drug delivery vehicles of some anticancer drugs. Theor. Chem. Acc. 137, 1–15 (2018).

    Article  Google Scholar 

  25. A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005).

    Article  CAS  Google Scholar 

  26. Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, and H. Dai, Drug delivery with carbon nanotubes for in vivo cancer treatment. Can. Res. 68, 6652–6660 (2008).

    Article  CAS  Google Scholar 

  27. J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55–60 (2006).

    Article  CAS  Google Scholar 

  28. M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, and J. Santamaría, Magnetic nanoparticles for drug delivery. Nano Today 2, 22–32 (2007).

    Article  Google Scholar 

  29. M. Kumar and K. Raza, C60-fullerenes as drug delivery carriers for anticancer agents: promises and hurdles. Pharm. Nanotechnol. 5, 169–179 (2017).

    CAS  Google Scholar 

  30. F. Kamali, G. Ebrahimzadeh Rajaei, S. Mohajeri, A. Shamel, and M. Khodadadi-Moghaddam, Adsorption behavior of metformin drug on the C60 and C48 nanoclusters: a comparative DFT study. Monatshefte für Chemie-Chem. Mon. 151, 711–720 (2020).

    Article  CAS  Google Scholar 

  31. R. Li, X. Qian, C. Gong, J. Zhang, Y. Liu, B. Xu, M.S. Humayun, and Q. Zhou, Simultaneous assessment of the whole eye biomechanics using ultrasonic elastography. IEEE Trans. Biomed. Eng. (2022). https://doi.org/10.1109/TBME.2022.3215498.

    Article  Google Scholar 

  32. E. Golipour-Chobar, F. Salimi, and G. Ebrahimzadeh-Rajaei, Sensing of lomustine drug by pure and doped C48 nanoclusters: DFT calculations. Sensors 9, 17 (2022).

    Google Scholar 

  33. J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, G. Liu, Y. Hou, R. Li, N. Zhang, and Q. Wu, Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Clean. Prod. 193, 236–248 (2018). https://doi.org/10.1016/j.jclepro.2018.05.009.

    Article  CAS  Google Scholar 

  34. X. Wang, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, M. Yang, and T. Gao, Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. Int. J. Adv. Manuf. Technol. 119, 631–646 (2022). https://doi.org/10.1007/s00170-021-08235-4.

    Article  Google Scholar 

  35. X. Cui, C. Li, Y. Zhang, Z. Said, S. Debnath, S. Sharma, H.M. Ali, M. Yang, T. Gao, and R. Li, Grindability of titanium alloy using cryogenic nanolubricant minimum quantity lubrication. J. Manuf. Process. 80, 273–286 (2022). https://doi.org/10.1016/j.jmapro.2022.06.003.

    Article  Google Scholar 

  36. X. Zhang, C. Li, Y. Zhang, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, and X. Zhang, Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. Int. J. Adv. Manuf. Technol. 86, 3427–3441 (2016). https://doi.org/10.1007/s00170-016-8453-3.

    Article  Google Scholar 

  37. Y. Zhang, C. Li, M. Yang, D. Jia, Y. Wang, B. Li, Y. Hou, N. Zhang, and Q. Wu, Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. J. Clean. Prod. 139, 685–705 (2016). https://doi.org/10.1016/j.jclepro.2016.08.073.

    Article  CAS  Google Scholar 

  38. M. Yang, C. Li, Y. Zhang, D. Jia, R. Li, Y. Hou, H. Cao, and J. Wang, Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram. Int. 45, 14908–14920 (2019). https://doi.org/10.1016/j.ceramint.2019.04.226.

    Article  CAS  Google Scholar 

  39. A.A. Peyghan, and H. Soleymanabadi, Adsorption of H2S at Stone–Wales defects of graphene-like BC3: a computational study. Mol. Phys. 112, 2737–2745 (2014).

    Article  CAS  Google Scholar 

  40. X. Zhang, Y. Tang, F. Zhang, and C.S. Lee, A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588.

    Article  CAS  Google Scholar 

  41. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, and H.-M. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4.

    Article  CAS  Google Scholar 

  42. Y. Liang, J. Li, Y. Xue, T. Tan, Z. Jiang, Y. He, W. Shangguan, J. Yang, and Y. Pan, Benzene decomposition by non-thermal plasma: a detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. J. Hazardous Mater. 420, 126584 (2021). https://doi.org/10.1016/j.jhazmat.2021.126584.

    Article  CAS  Google Scholar 

  43. X. Feng, L. Jiang, D. Li, S. Tian, X. Zhu, H. Wang, C. He, and K. Li, Progress and key challenges in catalytic combustion of lean methane. J. Energy Chem. 75, 173–215 (2022). https://doi.org/10.1016/j.jechem.2022.08.001.

    Article  CAS  Google Scholar 

  44. X.-Y. Li, Y. Song, C.-X. Zhang, C.-X. Zhao, and C. He, Inverse CO2/C2H2 separation in a pillared-layer framework featuring a chlorine-modified channel by quadrupole-moment sieving. Sep. Purif. Technol. 279, 119608 (2021). https://doi.org/10.1016/j.seppur.2021.119608.

    Article  CAS  Google Scholar 

  45. Q. Zhong, Y. Chen, B. Zhu, S. Liao, and K. Shi, A temperature field reconstruction method based on acoustic thermometry. Measurement 200, 111642 (2022). https://doi.org/10.1016/j.measurement.2022.111642.

    Article  Google Scholar 

  46. Y. Wei, C. Chen, C. Tan, L. He, Z. Ren, C. Zhang, S. Peng, J. Han, H. Zhou, and J. Wang, High-performance visible to near-infrared broadband Bi2O2Se nanoribbon photodetectors. Adv. Opt. Mater. (2022). https://doi.org/10.1002/adom.202201396.

    Article  Google Scholar 

  47. W. Hao and J. Xie, Reducing diffusion-induced stress of bilayer electrode system by introducing pre-strain in lithium-ion battery. J. Electrochem. Energy Convers. Storage (2021). https://doi.org/10.1115/1.4049238.

    Article  Google Scholar 

  48. Y. Xu, X. Chen, H. Zhang, F. Yang, L. Tong, Y. Yang, D. Yan, A. Yang, M. Yu, and Z. Liu, Online identification of battery model parameters and joint state of charge and state of health estimation using dual particle filter algorithms. Int. J. Energy Res. 46, 19615–19652 (2022). https://doi.org/10.1002/er.8541.

    Article  Google Scholar 

  49. E. Mehrjouei, H. Akbarzadeh, A.N. Shamkhali, M. Abbaspour, S. Salemi, and P. Abdi, Delivery of cisplatin anti-cancer drug from carbon, boron nitride, and silicon carbide nanotubes forced by Ag-nanowire: a comprehensive molecular dynamics study. Mol. Pharm. 14, 2273–2284 (2017).

    Article  CAS  Google Scholar 

  50. H. Fang, Z. Wang, Q. Chen, and Y. Wang, C@ZnO Self-assembly composite nanostructure with a strong absorption capacity in UV–visible light and its optical properties. J. Electron. Mater. 48, 7263–7269 (2019).

    Article  CAS  Google Scholar 

  51. R.G. Mendes, A. Bachmatiuk, B. Büchner, G. Cuniberti, and M.H. Rümmeli, Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B 1, 401–428 (2013).

    Article  CAS  Google Scholar 

  52. N. Kumar, P. Chamoli, M. Misra, M.K. Manoj, and A. Sharma, Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. Nanoscale 14, 3987–4017 (2022).

    Article  CAS  Google Scholar 

  53. G.A. Hughes, Nanostructure-mediated drug delivery. Nanomed. Nanotechnol. Biol. Med. 1, 22–30 (2005).

    Article  CAS  Google Scholar 

  54. S. Sayhan, and A. Kinal, Computational investigation and comparison of hydrogen storage properties of B24N24 and Al24N24 nanocages. Int. J. Hydrogen Energy 42, 14166–14180 (2017).

    Article  CAS  Google Scholar 

  55. M.M.R. Nayini, H. Sayadian, N. Razavipour, and M. Rezazade, Chemical-sensing of Amphetamine drug by inorganic AlN nanocage: a DFT/TDDFT study. Inorg. Chem. Commun. 121, 108237 (2020).

    Article  CAS  Google Scholar 

  56. Y. Yang, Y. Zhao, M. Xing, C. Tian, and F. Ahmadi Peyghan, Effects of Ag-decoration on the adsorption and detection of toxic OF2 gas on a GaN nanotube. Mol. Simulation 48, 1426–1434 (2022). https://doi.org/10.1080/08927022.2022.2095375.

    Article  CAS  Google Scholar 

  57. Z. Al-Sawaff, S. Dalgic, and F. Kandemirli, Theoretical study of the adsorption of BMSF-BENZ drug for osteoporosis disease treatment on Al-doped carbon nanotubes (Al-CNT) as a drug delivery vehicle. Eur. J. Chem. 12, 314–322 (2021).

    Article  CAS  Google Scholar 

  58. L. Zhao, M.-H. Chai, H.-F. Yao, Y.-P. Huang, and Z.-S. Liu, Molecularly imprinted polymers doped with carbon nanotube with aid of metal-organic gel for drug delivery systems. Pharm. Res. 37, 1–14 (2020).

    Article  Google Scholar 

  59. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang, and Y. Tang, Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl. Sci. Rev. 8, 178 (2021). https://doi.org/10.1093/nsr/nwaa178.

    Article  CAS  Google Scholar 

  60. X. Feng, L. Xia, Z. Jiang, M. Tian, S. Zhang, and C. He, Dramatically promoted toluene destruction over Mn@ Na-Al2O3@ Al monolithic catalysts by Ce incorporation: Oxygen vacancy construction and reaction mechanism. Fuel 326, 125051 (2022). https://doi.org/10.1016/j.fuel.2022.125051.

    Article  CAS  Google Scholar 

  61. Z. Zhang, F. Yang, H. Zhang, T. Zhang, H. Wang, Y. Xu, and Q. Ma, Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater. Charact. 171, 110732 (2021). https://doi.org/10.1016/j.matchar.2020.110732.

    Article  CAS  Google Scholar 

  62. C. Wang, L. Sheng, M. Jiang, X. Lin, Q. Wang, M. Guo, G. Wang, X. Zhou, X. Zhang, and J. Shi, Flexible SnSe2/N-doped porous carbon-fiber film as anode for high-energy-density and stable sodium-ion batteries. J. Power Sources 555, 232405 (2023). https://doi.org/10.1016/j.jpowsour.2022.232405.

    Article  CAS  Google Scholar 

  63. T. Gao, Y. Zhang, C. Li, Y. Wang, Y. Chen, Q. An, S. Zhang, H.N. Li, H. Cao, and H.M. Ali, Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front. Mech. Eng. 17, 1–35 (2022). https://doi.org/10.1007/s11465-022-0680-8.

    Article  Google Scholar 

  64. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25, 1463–1473 (2004).

    Article  CAS  Google Scholar 

  65. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, J. Comp. Chem. 14, 1347–1363 (1993).

    Article  CAS  Google Scholar 

  66. Y. Yang, M.N. Weaver, and K.M. Merz Jr., Assessment of the “6-31+ G**+ LANL2DZ” mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. J. Phys. Chem. A 113, 9843–9851 (2009).

    Article  CAS  Google Scholar 

  67. N. O’Boyle, A. Tenderholt, and K. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008).

    Article  Google Scholar 

  68. J. Beheshtian, A.A. Peyghan, M.B. Tabar, and Z. Bagheri, DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187 (2013).

    Article  CAS  Google Scholar 

  69. M. Noei and A.A. Peyghan, A DFT study on the sensing behavior of a BC2N nanotube toward formaldehyde. J. Mol. Model. 19, 3843–3850 (2013).

    Article  CAS  Google Scholar 

  70. H. Li, Y. Zhang, C. Li, Z. Zhou, X. Nie, Y. Chen, H. Cao, B. Liu, N. Zhang, and Z. Said, Cutting fluid corrosion inhibitors from inorganic to organic: progress and applications. Korean J. Chem. Eng. (2022). https://doi.org/10.1007/s11814-021-1057-0.

    Article  Google Scholar 

  71. S.F. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    Article  CAS  Google Scholar 

  72. B. Mennucci, J. Tomasi, R. Cammi, J. Cheeseman, M. Frisch, F. Devlin, S. Gabriel, and P. Stephens, Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J. Phys. Chem. A 106, 6102–6113 (2002).

    Article  CAS  Google Scholar 

  73. I. Parolini, C. Federici, C. Raggi, L. Lugini, S. Palleschi, A. De Milito, C. Coscia, E. Iessi, M. Logozzi, and A. Molinari, Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284, 34211–34222 (2009).

    Article  CAS  Google Scholar 

  74. A.J. Thistlethwaite, D.B. Leeper, D.J. Moylan, and R.E. Nerlinger, pH distribution in human tumors. Int. J. Rad. Oncol*. Biol*. Phys. 11, 1647–1652 (1985).

    Article  CAS  Google Scholar 

  75. J. Shi, Y. Liu, L. Wang, J. Gao, J. Zhang, X. Yu, R. Ma, R. Liu, and Z. Zhang, A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater. 10, 1280–1291 (2014).

    Article  CAS  Google Scholar 

  76. K. Nobusawa, M. Akiyama, A. Ikeda, and M. Naito, pH responsive smart carrier of [60] fullerene with 6-amino-cyclodextrin inclusion complex for photodynamic therapy. J. Mater. Chem. 22, 22610–22613 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Corresponding authors

Correspondence to Mustafa M. Kadhim or Ali Taha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, M.M., Taha, A., Abdullaha, S.A. et al. Delivery of Cisplatin Anti-cancer Drug by Si-Decorated Al24N24 Nanocage: DFT Evaluation of Electronic and Structural Features. J. Electron. Mater. 52, 3281–3290 (2023). https://doi.org/10.1007/s11664-023-10289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10289-x

Keywords

Navigation