Skip to main content
Log in

Effects of geometric isomerism in dinuclear platinum antitumor complexes on aquation reactions in the presence of perchlorate, acetate and phosphate

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The aquation and subsequent reactions of the dinuclear Pt antitumor complexes [{trans-PtCl(NH3)2}2(μ-NH2(CH2)6NH2)]2+ (1,1/t,t) and [{cis-PtCl(NH3)2}2(μ-NH2(CH2)6NH2)]2+ (1,1/c,c) in 15 mM perchlorate, acetate or phosphate solutions were followed at 298 K by [1H,15N] HSQC 2D NMR spectroscopy. Rate and equilibrium constants for the initial reversible aquation and the subsequent reversible reaction with phosphate or acetate are reported. The rate constant for the first aquation step is two-fold lower for 1,1/c,c than 1,1/t,t but the anation rate constants are similar so that the equilibrium lies further towards the chloro form for the 1,1/c,c compound. A pK a value of 6.01±0.03 was determined for the diaquated species [{cis-Pt(NH3)2(H2O)}2(μ-NH2(CH2)6NH2)]4+ (1,1/c,c-3) which is 0.4 units higher than that of the 1,1/t,t compound. The rate constants for the binding of acetate and phosphate to 1,1/t,t are similar, but the rate constant for the reverse reaction is close to ten-fold higher in the case of phosphate so that equilibrium conditions are attained more rapidly (12 h compared with 64 h). On the other hand, for 1,1/c,c the rate constants for the forward and reverse reactions with acetate and phosphate are quite similar so that equilibrium conditions are reached very slowly (80–100 h) and a greater proportion of phosphate-bound species are present. The reduced lability of the bound phosphate for 1,1/c,c is attributed to the formation of a macrochelate phosphate-bridged species which was characterized by 31P NMR and ESI-MS. The speciation profiles of 1,1/t,t and 1,1/c,c under physiological conditions are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The equilibrium constants pK n are not true equilibrium constants because no account has been made of the relative contributions of aqua and hydroxo ligation to the total at the given pH. This is also true for the rate constants. However, in all cases the solution pH is lower by 0.1 to 0.6 pH units than the pK a of the coordinated aqua ligand, and so the major form will be the aqua species

Abbreviations

HSQC :

Heteronuclear single-quantum coherence

ESI-MS :

Electrospray ionization mass spectrometry

References

  1. Farrell N (2004) Metals Biol Syst 41:252–296

    Google Scholar 

  2. Farrell N (1995) Comments Inorg Chem 16:373–389

    Article  CAS  Google Scholar 

  3. Farrell N, Qu Y, Hacker MP (1990) J Med Chem 33:2179–2184

    Article  PubMed  CAS  Google Scholar 

  4. Kraker AJ, Hoeschele JD, Elliott WL, Showalter HDH, Sercel AD, Farrell NP (1992) J Med Chem 35:4526–4532

    Article  PubMed  CAS  Google Scholar 

  5. Farrell N, Appleton TG, Qu Y, Roberts JD, Fontes APS, Skov KA, Wu P, Zou Y (1995) Biochemistry 34:15480–15486

    Article  PubMed  CAS  Google Scholar 

  6. Farrell N, Qu Y, Bierbach U, Valsecchi M, Menta E (1999) In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. VCHA, Wiley-VCH, Zurich, pp 479–496

  7. Pratesi G, Perego P, Polizzi D, Righetti SC, Supino R, Caserini C, Manzotti C, Giuliani FC, Pezzoni G, Tognella S, Spinelli S, Farrell N, Zunino F (1999) Brit J Cancer 80: 1912–1919

    Article  PubMed  CAS  Google Scholar 

  8. Perego P, Caserini C, Gatti L, Carenini N, Romanelli S, Supino R, Colangelo D, Viano I, Leone R, Spinelli S, Pezzoni G, Manzotti C, Farrell N, Zunino F (1999) Mol Pharmacol 55: 528–534

    PubMed  CAS  Google Scholar 

  9. Calvert AH, Thomas H, Colombo N, Gore M, Earl H, Sena L, Camboni G, Liati P, Sessa C (2001) Eur J Cancer 37(Suppl6):Poster Discussion 965

    Article  Google Scholar 

  10. Zehnulova J, Kasparková J, Farrell N, Brabec V (2001) J Biol Chem 276: 22191–22199

    Article  PubMed  CAS  Google Scholar 

  11. Brabec V, Kasparková J, Vrána O, Nováková O, Cox JW, Qu Y, Farrell N (1999) Biochemistry 38: 6781–6790

    Article  PubMed  CAS  Google Scholar 

  12. Kloster MBG, Hannis JC, Muddiman DC, Farrell N (1999) Biochemistry 38: 14731–14737

    Article  PubMed  CAS  Google Scholar 

  13. Kasparková J, Nováková O, Vrána O, Farrell N, Brabec V (1999) Biochemistry 38: 10997–11005

    Article  PubMed  CAS  Google Scholar 

  14. Kasparková J, Zehnulova J, Farrell N, Brabec V (2002) J Biol Chem 277: 48076–48086

    Article  PubMed  Google Scholar 

  15. Berners-Price SJ, Barnham KJ, Frey U, Sadler PJ (1996) Chem Eur J 2: 1283–1291

    Article  CAS  Google Scholar 

  16. Davies MS, Berners-Price SJ, Hambley TW (1998) J Am Chem Soc 120: 11380–11390

    Article  CAS  Google Scholar 

  17. Davies MS, Berners-Price SJ, Hambley TW (2000) Inorg Chem 39: 5603–5613

    Article  PubMed  CAS  Google Scholar 

  18. Cox JW, Berners-Price SJ, Davies MS, Qu Y, Farrell N (2001) J Am Chem Soc 123: 1316–1326

    Article  PubMed  CAS  Google Scholar 

  19. Berners-Price SJ, Davies MS, Cox JW, Thomas DS, Farrell N (2003) Chem Eur J 9: 713–725

    Article  CAS  Google Scholar 

  20. Hegmans A, Berners-Price SJ, Davies MS, Thomas DS, Humphreys AS, Farrell N (2004) J Am Chem Soc 126: 2166–2180

    Article  PubMed  CAS  Google Scholar 

  21. Berners-Price SJ, Sadler PJ (1996) Coord Chem Rev 151: 1–40

    CAS  Google Scholar 

  22. Oehlsen M, Qu Y, Farrell N (2003) Inorg Chem 42: 5498–5506

    Article  PubMed  CAS  Google Scholar 

  23. Oehlsen ME, Hegmans A, Qu Y, Farrell N (2005) Inorg Chem 44:3004–3006

    Article  PubMed  CAS  Google Scholar 

  24. Oehlsen ME, Hegmans A, Qu Y, Farrell N (2005) J Biol Inorg Chem (published online: 10 August 2005)

  25. Davies MS, Cox JW, Berners-Price SJ, Barklage W, Qu Y, Farrell N (2000) Inorg Chem 39: 1710–1715

    Article  PubMed  CAS  Google Scholar 

  26. Piotto M, Saudek V, Sklenar V (1992) J Biomol NMR 2: 661–665

    Article  PubMed  CAS  Google Scholar 

  27. Sklenar V, Piotto M, Leppik R, Saudek V (1993) J Magn Res Ser A 102: 241–245

    Article  CAS  Google Scholar 

  28. Palmer AG III, Cavanagh J, Wright PE, Rance M (1991) J Magn Res 93: 151–170

    CAS  Google Scholar 

  29. Davies MS, Thomas DS, Hegmans A, Berners-Price SJ, Farrell N (2002) Inorg Chem 41: 1101–1109

    Article  PubMed  CAS  Google Scholar 

  30. Yao S, Plastaras JP, Marzilli LG (1994) Inorg Chem 33: 6061–6077

    Article  CAS  Google Scholar 

  31. Hofmann A, Jaganyi D, Munro OQ, Liehr G, Van Eldik R (2003) Inorg Chem 42: 1688–1700

    Article  PubMed  CAS  Google Scholar 

  32. Jaganyi D, Hofmann A, Van Eldik R (2001) Angew Chem Int Ed 40: 1680–1683

    Article  CAS  Google Scholar 

  33. Schmülling M, Grove DM, van Koten G, Van Eldik R, Veldman N, Spek AL (1996) Organometallics 15: 1384–1391

    Article  Google Scholar 

  34. Gonnet F, Reeder F, Kozelka J, Chottard J-C (1996) Inorg Chem 35: 1653–1658

    Article  PubMed  CAS  Google Scholar 

  35. Appleton TG, Hall JR, Ralph SF, Thompson CSM (1989) Inorg Chem 28: 1989–1993

    Article  Google Scholar 

  36. Lim MC, Martin RB (1976) Inorg Nucl Chem 38: 1911–1914

    Article  CAS  Google Scholar 

  37. Guo Z, Chen Y, Zang E, Sadler PJ (1997) J Chem Soc, Dalton Trans: 4107–4111

  38. Arpalahti J, Lehikoinen P (1990) Inorg Chem 29: 2564–2567

    Article  CAS  Google Scholar 

  39. Erickson LE, Erickson HL, Meyer TH (1987) Inorg Chem 26: 997–999

    Article  CAS  Google Scholar 

  40. Alcock RM, Hartley FR, Rogers DE (1973) J Chem Soc, Dalton Trans 1070–1073

  41. Hofmann A, Van Eldik R (2003) J Chem Soc Dalton Trans 2979–2985

  42. Bose RN, Goswami N, Moghaddas S (1990) Inorg Chem 29: 3461–3467

    Article  CAS  Google Scholar 

  43. Jennerwein M, Andrews PA (1995) Drug Metab Dispos 23: 178–184

    PubMed  CAS  Google Scholar 

  44. Roberts JD, Peroutka J, Farrell N (1999) J Inorg Biochem 77: 51–57

    Article  PubMed  CAS  Google Scholar 

  45. Berners-Price SJ, Frenkiel TA, Frey U, Ranford JD, Sadler PJ (1992) J Chem Soc Chem Commun 789–791

Download references

Acknowledgements

This work was supported by the Australian Research Council, US National Institutes of Health (R01-CA78754) and the American Cancer Society (RPG89-002-11-CDD). We thank Dr. Alexander Hegmans for the preparation of 15N-1,1/c,c and Drs. Tony Reeder and Lindsay Byrne for the assistance with the mass spectrometry and NMR experiments, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan J. Berners-Price or Nicholas Farrell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Thomas, D.S., Davies, M.S. et al. Effects of geometric isomerism in dinuclear platinum antitumor complexes on aquation reactions in the presence of perchlorate, acetate and phosphate. J Biol Inorg Chem 10, 652–666 (2005). https://doi.org/10.1007/s00775-005-0013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0013-5

Keywords

Navigation