Skip to main content
Log in

Thermally-Stable High EFIS Properties of Ternary Lead-Free BNT-BKT-BZ Piezoelectric Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ternary lead-free (0.86−x)Bi0.5Na0.5TiO3-0.14Bi0.5K0.5TiO3-xBaZrO3 piezoelectric ceramics were successfully fabricated using a conventional solid-state reaction method. The relative densities, crystal structures, dielectric constant, electric field-induced polarization loops, and electric field-induced strain curves of the sintered piezoelectric ceramics were analyzed. All the piezoelectric ceramics were well sintered with a single perovskite structure and a high relative density of ~ 95%. The x-ray diffraction patterns of the (0.86−x)Bi0.5Na0.5TiO3-0.14Bi0.5K0.5TiO3-xBaZrO3 piezoelectric ceramics indicate a rhombohedral-to-tetragonal phase transition as a function of x. The BaZrO3 addition reduces the ferroelectricity and enhances the piezoelectricity of the (0.86−x)Bi0.5Na0.5TiO3-0.14Bi0.5K0.5TiO3-xBaZrO3 piezoelectric ceramics. The highest piezoelectric sensor coefficient d33 is observed in the x = 0.01 piezoelectric ceramic, whereas the highest piezoelectric actuator coefficient d33* is found in the x = 0.03 piezoelectric ceramic. Especially, the x = 0.03 piezoelectric ceramic shows a high d33* of 645 pm/V with a small d33* variation of ~ 20% in the temperature range of 25–100°C. The investigated (0.86−x)Bi0.5Na0.5TiO3-0.14Bi0.5K0.5TiO3-xBaZrO3 piezoelectric ceramics have a great potential for the thermal stability lead-free piezoelectric actuator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectric and Related Materials (Oxford: Oxford University Press, 2001).

    Book  Google Scholar 

  2. K. Uchino, Ferroelectric Devices (Boca Raton: CRC Press, 2000).

    Google Scholar 

  3. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, and S. Dong, Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5, 1900716 (2020).

    Article  CAS  Google Scholar 

  4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead-free piezoceramics. Nature 432, 84 (2004).

    Article  CAS  Google Scholar 

  5. Y. Liu, Y. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. Zhang, R. Wang, and W. Cao, Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba, Ca)(Ti, Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl. Mater. Interfaces 9, 29863 (2017).

    Article  CAS  Google Scholar 

  6. E. Cross, Lead-free at last. Nature 432, 24 (2004).

    Article  CAS  Google Scholar 

  7. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659 (2015).

    Article  Google Scholar 

  8. C.H. Hong, H.P. Kim, B.Y. Choi, H.S. Han, J.S. Lee, C.W. Ahn, and W. Jo, Lead-free piezoceramics—Where to move on? J. Materiomics 2, 1 (2016).

    Article  Google Scholar 

  9. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, and J. Rödel, Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics. 4, 13 (2018).

    Article  Google Scholar 

  10. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys. 38, 5564 (1999).

    Article  CAS  Google Scholar 

  11. K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 45, 4493 (2006).

    Article  CAS  Google Scholar 

  12. T.H. Dinh, M.R. Bafandeh, J.K. Kang, C.H. Hong, W. Jo, and J.S. Lee, Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82K0.18)1/2TiO3 ceramics. Ceram. Int. 41(1), S458 (2015).

    Article  CAS  Google Scholar 

  13. J. Hao, W. Li, J. Zhai, and H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. 135, 1 (2019).

    Article  Google Scholar 

  14. X. Ren, H. Yin, Y. Tang, H. Fan, and H. Yuan, The large electro-strain in BNKT-BST-100xTa lead-free ceramics. Ceram. Int. 46, 1876 (2020).

    Article  Google Scholar 

  15. S.K. Gupta, R. McQuade, B. Gibbons, P. Mardilovich, and D.P. Cann, Electric field-induced strain in Sr(Hf0.5Zr0.5)O3-modified Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics. J. Appl. Phys. 127, 074104 (2020).

    Article  Google Scholar 

  16. V.D.N. Tran, L.H. Vu, V.L. Van, N.B. Hung, K.N. Pham, and T.H. Dinh, Structure evolution and electrical properties of lead-free Bi0.5Na0.41K0.09TiO3 piezoceramics by isovalent La doping. J. Mater. Sci. Mater. Electron. 32, 4363 (2021).

    Article  CAS  Google Scholar 

  17. V.D.N. Tran, T.H. Dinh, H.S. Han, W. Jo, and J.S. Lee, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 relaxor ferroelectrics with temperature insensitive electrostrictive coefficient. Ceram. Int. 39, S119 (2013).

    Article  CAS  Google Scholar 

  18. M. Habib, M.H. Lee, F. Akram, M.H. Kim, W.J. Kim, and T.K. Song, Temperature-insensitive piezoelectric properties of lead-free BiFeO3-BaTiO3 ceramics with high Curie temperature. J. Alloys Compd. 851, 156788 (2021).

    Article  CAS  Google Scholar 

  19. T.H. Dinh and J.S. Lee, Low driving field-induced large strain in ternary lead-free Na0.5Bi0.5TiO3-SrTiO3-ABO3 piezoceramics. Mater. Lett. 313, 131772 (2022).

    Article  Google Scholar 

  20. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Found. Crystallogr. 32, 751 (1976).

    Google Scholar 

  21. S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716 (2009).

    Article  CAS  Google Scholar 

  22. F.Z. Yao, K. Wang, W. Jo, K.G. Webber, T.P. Comyn, J.X. Ding, B. Xu, L.Q. Cheng, M.P. Zheng, Y.D. Hou, and J.F. Li, Diffused phase transition boots thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 26, 1217 (2016).

    Article  CAS  Google Scholar 

  23. K. Wang, F.Z. Yao, W. Jo, D. Gobeljic, V.V. Shvartsman, D.C. Lupascu, J.F. Li, and J. Rödel, Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv. Funct. Mater. 23, 4079 (2013).

    Article  CAS  Google Scholar 

  24. M. Zhang, X. Zhang, S. Das, Z.M. Wang, X. Qi, and Q. Du, High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite. J. Mater. Chem. C. 7, 10551 (2019).

    Article  CAS  Google Scholar 

  25. R. Li, C. Zhou, L. Hou, C. Yuan, J. Xu, Q. Li, S. Cheng, and G. Rao, Incipient piezoelectricity boosts large strain with excellent thermal stability in (Bi0.5Na0.5)TiO3-based ceramics. J. Mater. Sci. - Mater. Electron. 33, 6121 (2022).

    Article  CAS  Google Scholar 

  26. A. Ullah, A. Ullah, I.W. Kim, D.S. Lee, S.J. Jeong, and C.W. Ahn, Large electromechanical response in lead-free La-doped BNKT-BST piezoelectric ceramics. J. Am. Ceram. Soc. 97, 2471 (2014).

    Article  CAS  Google Scholar 

  27. N. Zhao, H. Fan, J. Ma, X. Ren, Y. Shi, and Y. Zhou, Large strain of temperature insensitive in (1–x) (0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xSr0.7La0.2TiO3 lead-free ceramics. Ceram. Int. 44, 11331 (2018).

    Article  CAS  Google Scholar 

  28. X. Wang, X. Liu, H. Xue, J. Yin, and J. Wu, Temperature-independent large strain with small hysteresis in Sb-modified BNT-based lead-free ceramics. J. Am. Ceram. Soc. 105, 2116 (2022).

    Article  CAS  Google Scholar 

  29. X. Li, B. Zhang, X. Cao, B. Peng, and K. Ren, Large strain response in (Bi0.5Na0.5)TiO3-6BaTiO3-based lead-free ceramics at high temperature. Ceram. Int. 48, 9051 (2022).

    Article  CAS  Google Scholar 

  30. T. Wang, C. Wu, J. Xing, J. Wu, B. Li-Chen, X. Xu, K. Wang, and J. Zhu, Enhanced piezoelectricity and temperature stability in LaFeO3-modified KNN-based lead-free ceramics. J. Am. Ceram. Soc. 102, 6126 (2019).

    Article  CAS  Google Scholar 

  31. D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, and I.M. Reaney, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 37, 1857 (2017).

    Article  Google Scholar 

  32. H. Zhao, P. Ren, J. Wang, Y. Wang, M. Shen, L. Liu, X. Wang, G. Dong, G. Zhao, and D. Hua, Low hysteresis and temperature stable electrostrain in 0.97(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.03AgNbO3/xZnO composite ceramics. Ceram. Int. 47, 25296 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2020.28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Hinh Dinh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, T.H., Han, HS., Tran, V.D.N. et al. Thermally-Stable High EFIS Properties of Ternary Lead-Free BNT-BKT-BZ Piezoelectric Ceramics. J. Electron. Mater. 52, 2977–2985 (2023). https://doi.org/10.1007/s11664-023-10263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10263-7

Keywords

Navigation