Skip to main content
Log in

Analytical Modelling and Simulation of a Junctionless Accumulation-Mode Tube (JLAMT) Field-Effect Transistor (FET) for Radiation Sensing Dosimeter Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, an analytical model for a junctionless accumulation-mode-based nanotube field-effect transistor (JLAM-NT-FET) is proposed for radiation sensing dosimeter applications. The drift in electrical parameters including potential, threshold voltage (Vth), drain current (I), and subthreshold slope (SS) for different values of interface trap charge is studied in depth. The numerical findings accord well with the those of the simulation, and the numerical/analytical results are also validated at different channel lengths. The sensitivity of the proposed design is compared with the conventional junctionless FET for dosimeter applications by analysing the differences in Ids, ION/IOFF ratio, gm, SS, Vth and sensitivity. The results indicate that the JLAM-FET demonstrates better radiation sensing than the conventional junctionless FET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Mendiratta and S.L. Tripathi, A review on performance comparison of advanced MOSFET structures below 45 nm technology node. J. Semicond. (2020). https://doi.org/10.1088/1674-4926/41/6/061401.

    Article  Google Scholar 

  2. B. Yu, H. Lu, M. Liu, and Y. Taur, Explicit continuous model for double gate and surrounding gate MOSFET. IEEE Trans. Electron Device 54(10), 2715 (2007). https://doi.org/10.1109/TED.2007.904410.

    Article  Google Scholar 

  3. P. Kumar, D. Joy, and B.K. Jeblin, Nanoscale tri-gate MOSFET for Ultra low power applications using high-k dielectrics, Nanoelectronics, in 2013, INEC 2013, 5th IEEE International Conference on 2e412–19. (2013).

  4. D. Jimenez, J.J. Saenz, B. Iniguez, J. Sune, L.F. Marsal, and J. Pallares, Modeling of nanoscale gate-all-around MOSFETs. IEEE Electron Device Lett. 25(5), 314 (2004). https://doi.org/10.1109/LED.2004.826526.

    Article  Google Scholar 

  5. K.H. Yeo, S.D. Suk, M. Li, Y. Yeoh, K.H. Cho, K.-H. Hong, S. Yun, M.S. Lee, N. Cho, K. Lee, D. Hwang, B. Park, D.W. Kim, D. Park, and B.-I. Ryu, Gate-All-Around (GAA) Twin Silicon Nanowire MOSFET (TSNWFET) with 15 nm Length Gate and 4 nm Radius Nanowires. International Electron Devices Meeting https://doi.org/10.1109/IEDM.2006.346838. (2006), pp. 1–4.

  6. V.M. Srivastava, K.S. Yadav, and G. Singh, Drain current and noise model of cylindrical surrounding double gate MOSFET for RF switch. Procedia Eng. 38, 517 (2012). https://doi.org/10.1016/j.proeng.2012.06.064.

    Article  Google Scholar 

  7. S. Rewari, V. Nath, S. Haldar, S.S. Deswal, and R.S. Gupta, Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A 122, 1049 (2016). https://doi.org/10.1007/s00339-016-0583-9.

    Article  CAS  Google Scholar 

  8. A. Goel, S. Rewari, S. Verma, and R.S. Gupta, Novel dual-metal junctionless nanotube field-effect transistors for improved analog and low-noise applications. J. Electron. Mater. 50, 108 (2021). https://doi.org/10.1007/s11664-020-08541-9.

    Article  CAS  Google Scholar 

  9. A. Goel, S. Rewari, S. Verma, and R.S. Gupta, Dielectric modulated junctionless biotube FET (DM-JL-BT-FET) bio-sensor. IEEE Sens. J. 21(15), 16731 (2021). https://doi.org/10.1109/JSEN.2021.3077540.

    Article  CAS  Google Scholar 

  10. S. Sahay and M.J. Kumar, Fundamentals of Junctionless Field-Effect Transistors, Junctionless Field-Effect Transistors. (Wiley, 2019), pp. 67–123. https://doi.org/10.1002/9781119523543.ch3.

    Chapter  Google Scholar 

  11. A. Nowbahari, A. Roy, and L. Marchetti, Junctionless transistors: state-of-the-art. Electronics 9(7), 1 (2020). https://doi.org/10.3390/electronics9071174.

    Article  CAS  Google Scholar 

  12. T.K. Kim, D.H. Kim, Y.G. Yoon, J.M. Moon, B.W. Hwang, D.I. Moon, G.S. Lee, D.W. Lee, D.E. Yoo, H.C. Hwang, J.S. Kim, Y.-K. Choi, B.J. Cho, and S.-H. Lee, First demonstration of junctionless accumulation-mode bulk FinFETs with robust junction isolation. IEEE Electron Device Lett. 34(12), 1479 (2013). https://doi.org/10.1109/LED.2013.2283291.

    Article  CAS  Google Scholar 

  13. M. Soubra, J. Cygler, and G. Mackay, Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as radiation dosimeter. Med. Phys. 21(4), 567 (1994). https://doi.org/10.1118/1.597314.

    Article  CAS  Google Scholar 

  14. T. Cheung, M.J. Butson, and K.N. Peter, Effects of temperature variation on MOSFET dosimetry. Phys. Med. Biol. 49(13), N191 (2004). https://doi.org/10.1088/0031-9155/49/13/n02.

    Article  Google Scholar 

  15. R. Mann, S. Rewari, P. Pal, S. Sharma, and R.S. Gupta, Radiation-sensitive AlGaN/GaN MOS-HEMT-based dosimeter. J. Electron. Mater. 51, 5609 (2022). https://doi.org/10.1007/s11664-022-09795-1.

    Article  CAS  Google Scholar 

  16. ATLAS: 3D Device Simulator, SILVACO International, (2022)

  17. A.B. Rosenfeld, Semiconductor detectors in radiation medicine: radiotherapy and related applications, Radiation detectors for medical applications, NATO Security through Science Series. (Dordrecht: Springer, 2006), pp. 111–147.

    Google Scholar 

  18. A. Dubey, M. Gupta, R. Narang, and M. Saxena, Comparative Study of CMOS based Dosimeters for Gamma Radiation, in 2018 4th International Conference on Devices, Circuits and Systems (ICDCS), pp. 117–120, https://doi.org/10.1109/ICDCSyst.2018.8605158. (2018).

  19. A. Goel, S. Rewari, S. Verma, and R.S. Gupta, Temperature-dependent gate-induced drain leakages assessment of dual-metal nanowire field-effect transistor—analytical model. IEEE Trans. Electron Devices 366(5), 2437 (2019). https://doi.org/10.1109/TED.2019.2898444.

    Article  Google Scholar 

  20. N. Trivedi, M. Kumar, S. Haldar, S.S. Deswal, M. Gupta, and R.S. Gupta, Analytical modelling of junctionless accumulation mode MSOFET (JAM-CSG). Int. J. Numer. Modell Electron. Netw. Devices Fields 29(6), 1036 (2016). https://doi.org/10.1002/jnm.2162.

    Article  Google Scholar 

  21. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225 (2010). https://doi.org/10.1038/nnano.2010.15.

    Article  CAS  Google Scholar 

  22. C. Jiang, R. Liang, J. Wang, and J. Xu, A two dimensional numerical model for short channel junctionless double gate MOSFET. AIP Adv. 5, 057122 (2015). https://doi.org/10.1063/1.4921086.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed equally regarding this paper.

Corresponding author

Correspondence to Sonam Rewari.

Ethics declarations

Conflict of interest

There are no conflicts of interest amongst the authors.

Consent for Publication

All the authors have complete consent for publication.

Ethical Approval

All the ethics have been followed.

Human or Animal Rights

Research involving human participants and/or animals. No animals or humans were harmed during this research.

Informed Consent

All the authors have informed consent.

Consent to Participate

All the authors have complete consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

$$ M_{{\text{n}}} = \frac{{L_{{2{\text{n}}}} - L_{{1{\text{n}}}} \exp \left( { - \eta_{{\text{n}}} L} \right)}}{{2\sinh \left( {\eta_{{\text{n}}} L} \right)}} $$
(A1)
$$ N_{{\text{n}}} = \frac{{L_{{1{\text{n}}}} \exp \left( {\eta_{{\text{n}}} L} \right) - L_{{2{\text{n}}}} }}{{2\sinh \left( {\eta_{{\text{n}}} L} \right)}} $$
(A2)
$$ L_{{1{\text{n}}}} = \frac{2}{{t^{2} J_{1}^{2} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)}}\left[ {\left( {V_{{{\text{bi}}}} - V_{{{\text{gseff}}}} + \frac{{t_{{{\text{si}}}} }}{2}} \right)\frac{{t_{{{\text{eff}}}} J_{1} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)}}{{\eta_{{\text{n}}} }} + \frac{{\wp t_{{{\text{eff}}}} }}{{\eta_{{\text{n}}}^{2} }}\left\{ {t_{{{\text{eff}}}} J_{2} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right) - \left( {t_{{{\text{eff}}}} - \frac{{t_{{{\text{eff}}}} }}{2}} \right)\left( {\frac{{J_{1} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)}}{{\eta_{{\text{n}}} t_{{{\text{eff}}}} - 1}} - J_{0} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)} \right)} \right\}} \right] $$
(A3)
$$ L_{{2{\text{n}}}} = \frac{2}{{t^{2} J_{1}^{2} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)}}\left[ {\left( {V_{{{\text{bi}}}} + V_{{{\text{ds}}}} - V_{{{\text{gseff}}}} + \frac{{t_{{{\text{si}}}} }}{2}} \right)\frac{{t_{{{\text{eff}}}} J_{1} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)}}{{\eta_{{\text{n}}} }} + \frac{{\wp t_{{{\text{eff}}}} }}{{\eta_{{\text{n}}}^{2} }}\left\{ {t_{{{\text{eff}}}} J_{2} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right) - \left( {t_{{{\text{eff}}}} - \frac{{t_{{{\text{eff}}}} }}{2}} \right)\left( {\frac{{J_{1} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)}}{{\eta_{{\text{n}}} t_{{{\text{eff}}}} - 1}} - J_{0} \left( {\eta_{{\text{n}}} t_{{{\text{eff}}}} } \right)} \right)} \right\}} \right] $$
(A4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batra, S., Rewari, S. Analytical Modelling and Simulation of a Junctionless Accumulation-Mode Tube (JLAMT) Field-Effect Transistor (FET) for Radiation Sensing Dosimeter Applications. J. Electron. Mater. 52, 3604–3612 (2023). https://doi.org/10.1007/s11664-023-10240-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10240-0

Keywords

Navigation