Skip to main content
Log in

Investigation of heavy ion radiation and temperature on junctionless tunnel field effect transistor

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Junctionless tunnel field effect transistor (JLTFET) is one of the most promising devices due to its exceptional performance as it combines the advantages of JLFET (junctionless field effect transistor) and TFET (tunneling field effect transistor). In this study, 20 nm JLTFET is proposed, and for the first time, the device performance is investigated by exposing it to heavy ion radiation for a lower and higher dose of LET values. The most sensitive location for the radiation study is found to be the channel region. The parameters, collected charge (QC), transient peak current (Ipeak), and bipolar gain (β) are extracted with respect to time and found to be totally insensitive for lower dose whereas less sensitive for higher dose of LET values. This is due to the maximum electron density prevailing for a higher dose at a particular time instant. The same study is repeated for a varying temperature range from 100 K to 500 K and found that the device is insensitive for lower temperature and lower dose of LET values. It is good to mention that at a lower temperature, subthreshold swing (SS) and β gets decreased whereas for higher temperature, threshold voltage (Vth) follows a decreasing trend which makes the device suitable for radiation hardening applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thaul S, O'Maonaigh H (1999) Potential radiation exposure in military operations: protecting the soldier before, during, and after Institute of Medicine (US) Committee on Battlefield Radiation Exposure Criteria. National Academies Press (US), Washington (DC), p 1 Introduction. https://www.ncbi.nlm.nih.gov/books/NBK224065/

    Google Scholar 

  2. Flakus FN (1982) Detecting and measuring ionizing radiation- a short history. IAEA Bull 23(4):31–36

    Google Scholar 

  3. Jihyun K, Pearton SJ, Chaker F, Jiancheng Y, Fan R, Suhyun K, Polyakov AY (2019) Radiation damage effects in Ga2O3 materials and devices. J Mater Chem C 7(1):10–24. https://doi.org/10.1039/c8tc04193h

    Article  CAS  Google Scholar 

  4. Schwank JR, Shaneyfelt MR, Dodd PE (2013) Radiation hardness assurance testing of microelectronic devices and integrated circuits: radiation environments, physical mechanisms, and foundations for hardness assurance. IEEE Trans Nucl Sci 60(3):2074–2100. https://doi.org/10.1109/TNS.2013.2254722

    Article  CAS  Google Scholar 

  5. Arshak K, Korostynska O (2006) Response of metal oxide thin film structures to radiation. Mater Sci Eng B 133:1–7. https://doi.org/10.1016/j.mseb.2006.06.012

    Article  CAS  Google Scholar 

  6. Martin A et al (2018) An introduction to radiation protection. CRC Press

    Book  Google Scholar 

  7. Saleh HM, Bondouk II, Salama E, Esawii HA (2021) Consistency and shielding efficiency of cement-bitumen composite for use as a gamma-radiation shielding material. Prog Nucl Energy 137:103764. https://doi.org/10.1016/j.pnucene.2021.103764

    Article  CAS  Google Scholar 

  8. Chmielewski AG, Haji Saeid M (2004) Radiation technologies: past, present, and future. Radiation Physics and Chemistry. Volume 71. Issues 1–2:17–21. ISSN0969806X. https://doi.org/10.1016/j.radphyschem.2004.05.040

    Article  CAS  Google Scholar 

  9. Heyns M (2009) Tsai W (2009) Ultimate scaling of CMOS logic devices with Ge and III–V materials. MRS Bull 34(7):485–492. https://doi.org/10.1557/mrs2009.136

    Article  Google Scholar 

  10. Park JT, Colinge JP (2002) Multiple-gate SOI MOSFETs: device design guidelines. IEEE Trans Electron Devices 49(12):2222–2229

    Article  Google Scholar 

  11. Hubert G, Artola L, Regis D (2015) Impact of scaling on the soft error sensitivity of bulk, FDSOI and FinFET technologies due to atmospheric radiation. Integration 50:39–47. https://doi.org/10.1016/j.vlsi.2015.01.003

    Article  Google Scholar 

  12. Oldham TR, McLean FB (2003) Total ionizing dose effects in MOS oxides and devices. IEEE Trans Nucl Sci 50(3):483–499

    Article  CAS  Google Scholar 

  13. Gaillardin M et al (2013) Radiation effects in advanced SOI devices: new insights into total ionizing dose and single-event effects. In: IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), pp 1–2. https://doi.org/10.1109/S3S.2013.6716530

    Chapter  Google Scholar 

  14. Simoen E et al (2013) Radiation effects in advanced multiple gate and silicon-on-insulator transistors. IEEE Trans Nucl Sci 60(3):1970–1991. https://doi.org/10.1109/TNS.2013.2255313

    Article  CAS  Google Scholar 

  15. Alles ML et al (2011) Radiation hardness of FDSOI and FinFET technologies. In: IEEE 2011 International SOI Conference, pp 1–2. https://doi.org/10.1109/SOI.2011.6081714

    Chapter  Google Scholar 

  16. Elwailly A, Saltin J, Gadlage MJ, Wong HY (2021) Radiation hardness study of LG = 20 nm FinFET and nanowire SRAM through TCAD simulation. IEEE Trans Electron Devices 68(5):2289–2294. https://doi.org/10.1109/TED.2021.3067855

    Article  CAS  Google Scholar 

  17. Datta S, Liu H, Narayanan V (2014) Tunnel FET technology: a reliability perspective. Microelectron Reliab 54(5):861–874. https://doi.org/10.1016/j.microrel.2014.02.002

    Article  Google Scholar 

  18. Ding L, Gerardin S, Paccagnella A, Gnani E, Bagatin M, Driussi F, Selmi L, Le Royer C (2015) Effects of electrical stress and ionizing radiation on Si-based TFETs. EUROSOI-ULIS 2015: 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon. IEEE, pp 137–140. https://doi.org/10.1109/ULIS.2015.7063792

  19. Ding L, Gnani E, Gerardin S, Bagatin M, Driussi F, Palestri P, Paccagnella A (2014) Total ionizing dose effects in Si-based tunnel FETs. IEEE Trans Nucl Sci 61(6):2874–2880. https://doi.org/10.1109/tns.2014.2367548

    Article  CAS  Google Scholar 

  20. Dubey A, Narang R, Saxena M, Gupta M (2019) Investigation of total ionizing dose effect on SOI tunnel FET. Superlattices Microstruct 133:106186. https://doi.org/10.1016/j.spmi.2019.106186

    Article  CAS  Google Scholar 

  21. Xi K, Bi J, Chu J, Xu G, Li B, Wang H, Sandip M (2020) Total ionization dose effects of N-type tunnel field effect transistor (TFET) with ultra-shallow pocket junction. Appl Phys A 126(6). https://doi.org/10.1007/s00339-020-03622-2

  22. Yan G, Xu G, Bi J, Tian G, Xu Q, Yin H, Li Y (2020) Accumulative total ionizing dose (TID) and transient dose rate (TDR) effects on planar and vertical ferroelectric tunneling-field-effect-transistors (TFET). Microelectron Reliab 114:113855. https://doi.org/10.1016/j.microrel.2020.113855

    Article  CAS  Google Scholar 

  23. Wang Q, Liu H, Wang S, Chen S (2018) TCAD simulation of single-event-transient effects in L-shaped channel tunneling field-effect transistors. IEEE Trans Nucl Sci 65(8):2250–2259. https://doi.org/10.1109/tns.2018.2851366

    Article  CAS  Google Scholar 

  24. Hong P, Lee H, Park J (2019) Alpha particle effect on multi-nanosheet tunneling field-effect transistor at 3-nm technology node. Micromachines 10(12):847. https://doi.org/10.3390/mi10120847

    Article  Google Scholar 

  25. Kamal N, Kamal AK, Singh J (2021) L-shaped tunnel field-effect transistor-based 1 T DRAM with improved read current ratio, retention time, and sense margin. IEEE Trans. Electron Devices 68(6):2705–2711. https://doi.org/10.1109/TED.2021.3074348

    Article  CAS  Google Scholar 

  26. Kumar S, Chatterjee AK, Pandey R (2021) Performance analysis of gate electrode work function variations in double-gate junctionless FET. Silicon. 13:3447–3459. https://doi.org/10.1007/s12633-020-00774-x

    Article  CAS  Google Scholar 

  27. Dubey A, Singh Ajay, Narang R, Saxena M, Gupta, (2018) Modelling and simulation of junctionless double gate radiation sensitive FET (RADFET) dosimeter. IEEE Trans Nanotechnol 17(1):49–55. https://doi.org/10.1109/tnano.2017.2719286

    Article  CAS  Google Scholar 

  28. Munteanu D, Autran JL, Moindjie S (2017) Single-event-transient effects in junctionless double-gate MOSFETs with dual-material gate investigated by 3D simulation. Microelectron Reliab 76-77:719–724. https://doi.org/10.1016/j.microrel.2017.07.040

    Article  CAS  Google Scholar 

  29. Ren S, Bhuiyan MA, Wu H, Jiang R, Ni K, Zhang EX, Ma TP (2021) Total ionizing dose (TID) effects in ultra-thin body Ge-on-insulator (GOI) junctionless CMOSFETs with recessed source/drain and channel. IEEE Trans Nucl Sci 64(1):176–180. https://doi.org/10.1109/tns.2016.2624294

    Article  CAS  Google Scholar 

  30. Rajendiran P, Srinivasan R (2019) Single-event radiation performance analysis of junction and junctionless FET-based low-noise amplifiers. J Comput Electron 18:1162–1172. https://doi.org/10.1007/s10825-019-01370-y

    Article  CAS  Google Scholar 

  31. Wang Y, Shan C, Liu C, Li X, Yang J, Tang Y, Cao F (2017) Graded-channel junctionless dual-gate MOSFETs for radiation tolerance. Jpn J Appl Phys 56(12):124201. https://doi.org/10.7567/jjap.56.124201

    Article  CAS  Google Scholar 

  32. Dubey A, Narang R, Saxena M, Gupta M (2020) Investigation of single event transient effects in junctionless accumulation mode MOSFET. IEEE Trans Device Mater Reliab 20:604–608. https://doi.org/10.1109/tdmr.2020.3014176

    Article  Google Scholar 

  33. Munteanu D, Autran JL (2014) Radiation sensitivity of junctionless double-gate 6 T SRAM cells investigated by 3-D numerical simulation. Microelectron Reliab 54(9-10):2284–2288. https://doi.org/10.1016/j.microrel.2014.07.079

    Article  Google Scholar 

  34. Kumar AP, Ghosh B, Bal G (2014) Optimal design for a high-performance H-JLTFET using HfO2 as a gate dielectric for ultra-low power applications. RSC Adv 4:22803–22807. https://doi.org/10.1039/C4RA00538D

    Article  Google Scholar 

  35. Ghosh B, Akram MW (2013) Junctionless tunnel field effect transistor. IEEE Electron Device Lett 34(5):584–586. https://doi.org/10.1109/LED.2013.2253752

    Article  CAS  Google Scholar 

  36. Awadhiya B, Pandey S, Nigam K, Kondekar PN (2017) Effect of ITCs on linearity and distortion performance of Junctionless tunnel field effect transistor. Superlattices Microstruct 111:293–301, ISSN 0749-6036. https://doi.org/10.1016/j.spmi.2017.06.036

    Article  CAS  Google Scholar 

  37. Sukeshni T et al (2017) Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans Electron Devices 64(9):3943–3950

    Article  Google Scholar 

  38. Bal P, Akram MW, Mondal P et al (2013) Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron 12:782–789. https://doi.org/10.1007/s10825-013-0483-6

    Article  Google Scholar 

  39. Goswami RN, Poorvasha S, Lakshmi B (2018) Tunable work function in junctionless tunnel FETs for performance enhancement. Aust J Electr Electron Eng 15:80–85

    Article  Google Scholar 

  40. Wadhwa G, Raj B (2019) Design, simulation and performance analysis of JLTFET biosensor for high sensitivity. IEEE Trans Nanotechnol 18:567–574. https://doi.org/10.1109/TNANO.2019.2918192

    Article  CAS  Google Scholar 

  41. Haiwu X, Hongxia L, Shupeng C, Tao H, Shulong W (2020) Electrical performance of InAs/GaAs0.1Sb0.9 heterostructure junctionless TFET with dual-material gate and Gaussian-doped source. Semicond Sci Technol 35:095004

    Article  Google Scholar 

  42. Aishwarya K, Lakshmi B (2022) Radiation study of TFET and JLFET-based devices and circuits: a comprehensive review on the device structure and sensitivity. Radiat Eff Defects Solids. https://doi.org/10.1080/10420150.2022.2133708

    Article  Google Scholar 

  43. Synopsys Sentaurus Device User Guide (T-2022.03) (2022) Synopsys. Mountain View, CA, USA

    Google Scholar 

  44. Glaeser RM (2016) The resolution revolution: recent advances In cryoEM Volume 579 Specimen Behavior in the Electron Beam. In: Methods in enzymology, pp 19–50. https://doi.org/10.1016/bs.mie.2016.04.010

    Chapter  Google Scholar 

  45. Kamal N, Lahgere A, Singh J (2019) Evaluation of radiation resiliency on emerging junctionless/dopingless devices and circuits. IEEE Trans Device Mater Reliab 19(4):728–732. https://doi.org/10.1109/TDMR.2019.2949064

    Article  CAS  Google Scholar 

  46. Vinodhkumar N, Srinivasan R (2017) SET and SEU performance of single, double, triple and quadruple-gate junctionless FETs using numerical simulations. Microelectron J 67:38–42. https://doi.org/10.1016/j.mejo.2017.07.008

    Article  Google Scholar 

  47. Fadjie-Djomkam AB, Ababou- Girard S, Hiremath R, Herrier C, Fabre B, Solal F, Godet C (2011) Temperature dependence of current density and admittance in metal-insulator-semiconductor junctions with molecular insulator. J Appl Phys 110(8):083708. https://doi.org/10.1063/1.3651401

    Article  CAS  Google Scholar 

  48. Wali A, Kaushal P, Khanna G (2021) Impact of temperature on the performance of tunnel field effect transistor. In: International Conference on Emerging Technologies: AI, IoT, and CPS for Science & Technology Applications, September 06–07, NITTTR, Chandigarh, India

  49. Madadi D, Orouji AA (2021) β-Ga2O3 double gate junctionless FET with an efficiency volume depletion region. Phys Lett A 412:127575. https://doi.org/10.1016/j.physleta.2021.127525

    Article  CAS  Google Scholar 

  50. Ghibaudo G, Aouad M, Casse M, Martinie S, Poiroux T, Balestra F (2020) On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature. Solid State Electron 170:107820. https://doi.org/10.1016/j.sse.2020.107820

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lakshmi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aishwarya, K., Lakshmi, B. Investigation of heavy ion radiation and temperature on junctionless tunnel field effect transistor. J Nanopart Res 25, 137 (2023). https://doi.org/10.1007/s11051-023-05793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05793-4

Keywords

Navigation