Skip to main content
Log in

Dual-Band Microwave/mm-Wave Absorption Properties of γ-Fe2O3 and Fe3O4 Nanoparticles for Stealth Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The primary aim of the present investigation is to develop a novel method for a magnetic system as high-performance microwave absorbing material, particularly in the K and Ka band (18–42 GHz) frequencies. A simple cost-effective pulsed-DC electrochemical method has been developed to synthesize Fe3O4 and γ-Fe2O3 nanoparticles. The particle size of the as-synthesized nanoparticles was analyzed by x-ray diffraction and the magnetic properties were verified by vibrating sample magnetometer (VSM). It was found that a higher wt% of nanoparticles in paraffin wax corresponds to the higher microwave absorbing performance in terms of reflection loss (RL). Moreover, the γ-Fe2O3 (70 wt%) nanoparticles show the maximum RL of − 40.6 dB at 30.2 GHz, whereas the Fe3O4 (70 wt%) nanoparticles show the maximum RL of − 13.5 dB at 42 GHz at an absorber layer thickness of 2 mm. Compared to Fe3O4, the γ-Fe2O3 nanoparticles have greater \(\varepsilon^{\prime}\) and \(\varepsilon^{\prime\prime}\) values, which can be ascribed to the improved conductivity and more polarization sites being responsible for their enhanced microwave absorption. The excellent microwave absorption performance of the γ-Fe2O3 nanoparticles in the K and Ka bands endows its application in advanced communication systems and stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Yu, F. Chi, Y. Sun, J. Guo, and X. Liu, Assembled porous Fe3O4@g-C3N4 hybrid nanocomposites with multiple interface polarization for stable microwave absorption. Ceram. Int. 44, 19207 (2018).

    Article  CAS  Google Scholar 

  2. X. Zhang, X. Su, B. Zhang, and J. Wang, Facile synthesis of graphene oxide-wrapped CNFs as high-performance microwave absorber. Ceram. Int. 45, 12895 (2019).

    Article  CAS  Google Scholar 

  3. Y. Wang, D. Sun, G. Liu, Y. Wang, and W. Jiang, Size-controllable synthesis of Fe3O4 nanospheres for electromagnetic wave absorber. J. Electron. Mater. 44, 2292 (2015).

    Article  CAS  Google Scholar 

  4. P. Wang, J. Zhang, Y. Chen, G. Wang, D. Wang, T. Wang, and F. Li, Magnetism and microwave absorption properties of Fe3O4 microflake-paraffin composites without and with magnetic orientation. J. Electron. Mater. 47, 721 (2018).

    Article  CAS  Google Scholar 

  5. M.A. Aslam, K. Hu, W. Ding, A. Hassan, Y. Bian, K. Qiu, L. Qiangchun, and Z. Sheng, Dimensionality determined microwave absorption properties in ferrite/bio-carbon composites. Ceram. Int. 47, 27496 (2021).

    Article  CAS  Google Scholar 

  6. N. Aggarwal and S.B. Narang, Comparison of Ku (12.4–18 GHz) and K (18–26.5 GHz) band microwave absorption characterization of Co-Zr Co-substituted Ni-Zn ferrites. J. Electron. Mater. 50, 5338 (2021).

    Article  CAS  Google Scholar 

  7. T. Liu and S.-S. Kim, Ultrawide bandwidth electromagnetic wave absorbers composed of double-layer frequency selective surfaces with different patterns. Sci. Rep. 8, 13889 (2018).

    Article  Google Scholar 

  8. J. Ning, S. Dong, X. Luo, K. Chen, J. Zhao, T. Jiang, and Y. Feng, Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances. Results Phys. 18, 103320 (2020).

    Article  Google Scholar 

  9. A. Arora and S.B. Narang, Tuning of microwave absorptive behavior of double substituted barium hexaferrites with change in thickness in 26.5–40.0 GHz band. Appl. Phys. A 123, 520 (2017).

    Article  Google Scholar 

  10. S.B. Narang and K. Pubby, Electromagnetic characterization of Co-Ti-doped Ba-M ferrite-based frequency-tunable microwave absorber in 124–40 GHz. J. Supercond. Novel Magn. 30, 511 (2017).

    Article  CAS  Google Scholar 

  11. Y. Ge, C. Li, G.I.N. Waterhouse, Z. Zhang, and L. Yu, ZnFe2O4@SiO2@Polypyrrole nanocomposites with efficient electromagnetic wave absorption properties in the K and Ka band regions. Ceram. Int. 47, 1728 (2021).

    Article  CAS  Google Scholar 

  12. F. Liu, C. Li, G.I.N. Waterhouse, X. Jiang, Z. Zhang, and L. Yu, Lightweight PVDF/γ-Fe2O3/PANI foam for efficient broadband microwave absorption in the K and Ka bands. J. Alloys Compd. 876, 159983 (2021).

    Article  CAS  Google Scholar 

  13. M.S. Saeed, J. Seyed-Yazdi, and S.H. Hekmatara, Surface modification of MWCNT with cluster form of Fe2O3/Fe3O4 NPs for improving their microwave absorption performance. Chem. Phys. Lett. 756, 137823 (2020).

    Article  CAS  Google Scholar 

  14. G. Tong, W. Wu, J. Guan, H. Qian, J. Yuan, and W. Li, Synthesis and characterization of nanosized urchin-like α-Fe2O3 and Fe3O4: microwave electromagnetic and absorbing properties. J. Alloys Compd. 509, 4320 (2011).

    Article  CAS  Google Scholar 

  15. S. Wang, Q. Jiao, Q. Shi, H. Zhu, T. Feng, Q. Lu, C. Feng, H. Li, D. Shi, and Y. Zhao, Synthesis of porous nitrogen-doped graphene decorated by γ-Fe2O3 nanorings for enhancing microwave absorbing performance. Ceram. Int. 46, 1002 (2020).

    Article  CAS  Google Scholar 

  16. L.L. Adebayo, H. Soleimani, N. Yahya, Z. Abbas, F.A. Wahaab, R.T. Ayinla, and H. Ali, Recent advances in the development OF Fe3O4-based microwave absorbing materials. Ceram. Int. 46, 1249 (2020).

    Article  CAS  Google Scholar 

  17. A. Feng, Z. Jia, Y. Zhao, and H. Lv, Development of Fe/Fe3O4@C composite with excellent electromagnetic absorption performance. J. Alloys Compd. 745, 547–554 (2018).

    Article  CAS  Google Scholar 

  18. G. Wang, Y. Chang, L. Wang, L. Liu, and C. Liu, Facilely preparation and microwave absorption properties of Fe3O4 nanoparticles. Mater. Res. Bull. 48, 1007 (2013).

    Article  CAS  Google Scholar 

  19. C. Shang, G. Ji, W. Liu, X. Zhang, H. Lv, and Y. Du, One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application. RSC Adv. 5, 80450 (2015).

    Article  CAS  Google Scholar 

  20. F. Wang, X. Li, Z. Chen, W. Yu, K.P. Loh, B. Zhong, Y. Shi, and Q.-H. Xu, Efficient low-frequency microwave absorption and solar evaporation properties of γ-Fe2O3 nanocubes/graphene composites. Chem. Eng. J. 405, 126676 (2021).

    Article  CAS  Google Scholar 

  21. W. You, H. Bi, W. She, Y. Zhang, and R. Che, Dipolar-distribution cavity γ-Fe2O3@C@α-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13, 1602779 (2017).

    Article  Google Scholar 

  22. S. Parveen and A. Manju, Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes, New Polymers for Special Applications. ed. A.D.S. Gomes (Rijeka: IntechOpen, 2012), p. 3.

    Google Scholar 

  23. S. Wang, Q. Jiao, X. Liu, Y. Xu, Q. Shi, S. Yue, Y. Zhao, H. Liu, C. Feng, and D. Shi, Controllable synthesis of γ-Fe2O3 nanotube/porous rGO composites and their enhanced microwave absorption properties. ACS Sustain. Chem. Eng. 7, 7004 (2019).

    Article  CAS  Google Scholar 

  24. G. Sun, B. Dong, M. Cao, B. Wei, and C. Hu, Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 23, 1587 (2011).

    Article  CAS  Google Scholar 

  25. H. Cui, Y. Liu, and W. Ren, Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4, during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv. Powder Technol. 24, 93 (2013).

    Article  CAS  Google Scholar 

  26. M. Aliahmad and N. Nasiri Moghaddam, Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater. Sci. Pol. 31, 264 (2013).

    Article  CAS  Google Scholar 

  27. K. Iraj and S. Mosivand, Phase transition of electrooxidized Fe3O4 to gamma and alpha-Fe2O3 nanoparticles using sintering treatment. Acta Phys. Pol. Ser. A 125, 1210 (2014).

    Article  Google Scholar 

  28. A.M. Ali, N. Yahya, and S. Qureshi, Interactions of ferro-nanoparticles (hematite and magnetite) with reservoir sandstone: implications for surface adsorption and interfacial tension reduction. Pet. Sci. 17, 1037 (2020).

    Article  CAS  Google Scholar 

  29. X. Zhang, D. Han, Z. Hua, and S. Yang, Porous Fe3O4 and gamma-Fe2O3 foams synthesized in air by sol-gel autocombustion. J. Alloys Compd. 684, 120 (2016).

    Article  CAS  Google Scholar 

  30. B. Yadav, R. Singh, A. Vishwakarma, and N. Kumar, Facile synthesis of substantially magnetic hollow nanospheres of maghemite (γ-Fe2O3) originated from magnetite (Fe3O4) via solvothermal method. J. Supercond. Novel Magn. 33, 2199 (2020).

    Article  CAS  Google Scholar 

  31. N. Zhang, Y. Huang, and M. Wang, 3D ferromagnetic graphene nanocomposites with ZnO nanorods and Fe3O4 nanoparticles co-decorated for efficient electromagnetic wave absorption. Compos. B Eng. 136, 135 (2018).

    Article  CAS  Google Scholar 

  32. X. Zeng, X. Cheng, R. Yu, and G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606 (2020).

    Article  CAS  Google Scholar 

  33. J. Li, Y. Xie, W. Lu, and T.-W. Chou, Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129, 76 (2018).

    Article  CAS  Google Scholar 

  34. L. Huang, X. Liu, and R. Yu, Enhanced microwave absorption properties of rod-shaped Fe2O3/Fe3O4/MWCNTs composites. Prog. Nat. Sci. Mater. Int. 28, 288 (2018).

    Article  CAS  Google Scholar 

  35. N. Li, G.-W. Huang, Y.-Q. Li, H.-M. Xiao, Q.-P. Feng, N. Hu, and S.-Y. Fu, Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 9, 2973 (2017).

    Article  CAS  Google Scholar 

  36. Y. Qing, D. Min, Y. Zhou, F. Luo, and W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon 86, 98 (2015).

    Article  CAS  Google Scholar 

  37. J. Wei, J. Liu, and S. Li, Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated on hollow glass spheres. J. Magn. Magn. Mater. 312, 414 (2007).

    Article  CAS  Google Scholar 

  38. K. Jia, R. Zhao, J. Zhong, and X. Liu, Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres. J. Magn. Magn. Mater. 322, 2167 (2010).

    Article  CAS  Google Scholar 

  39. S. Ni, X. Sun, X. Wang, G. Zhou, F. Yang, J. Wang, and D. He, Low temperature synthesis of Fe3O4 micro-spheres and its microwave absorption properties. Mater. Chem. Phys. 124, 353 (2010).

    Article  CAS  Google Scholar 

  40. S. Ni, S. Lin, Q. Pan, F. Yang, K. Huang, and D. He, Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J. Phys. D Appl. Phys. 42, 055004 (2009).

    Article  Google Scholar 

  41. M. George, S.S. Nair, K.A. Malini, P.A. Joy, and M.R. Anantharaman, Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J. Phys. D Appl. Phys. 40, 1593 (2007).

    Article  CAS  Google Scholar 

  42. H. Wu, G. Wu, and L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443 (2015).

    Article  CAS  Google Scholar 

  43. N. Gill, A.L. Sharma, V. Gupta, M. Tomar, O.P. Pandey, and D.P. Singh, Enhanced microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. J. Alloys Compd. 797, 1190 (2019).

    Article  CAS  Google Scholar 

  44. S.S. Batsanov and D.A. Dan’kin, Size effect on dielectric properties of synthetic diamond. J. Phys. D Appl. Phys. 49, 275301 (2016).

    Article  Google Scholar 

  45. S. Narang and K. Pubby, Electromagnetic characterization of Co-Ti-DOPED Ba-M ferrite-based frequency-tunable microwave absorber in 12.4–40 GHz. J. Supercond. Novel Magn. 30, 511 (2017).

    Article  CAS  Google Scholar 

  46. P. Kaur, S. Bindra Narang, and S. Bahel, Enhanced microwave absorption properties of Ni-Zr doped La-Sr hexagonal ferrites in 18–40 GHz frequency range. Mater. Sci. Eng. B 268, 115141 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by (I) DST-AMT Grants (ii) MHRD-IMPRINT grant and (iii) DST-SERB grant of Government of India.

Funding

The funding was provided by Department of Science & Technology (IN) (Grant No. SERB), Department of Science and Technology (IN) (Grant No. AMT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijoy Kumar Kuanr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, N., Chaudhary, D. et al. Dual-Band Microwave/mm-Wave Absorption Properties of γ-Fe2O3 and Fe3O4 Nanoparticles for Stealth Applications. J. Electron. Mater. 52, 2762–2771 (2023). https://doi.org/10.1007/s11664-023-10238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10238-8

Keywords

Navigation