Skip to main content
Log in

Influence of Dry and Wet Etching on AlInSb Contact Resistivity, Transfer Length, and Sheet Resistance Using Circular Transmission Model

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The ohmic contact property is a major concern in semiconductors, and in particular InSb 2DEG devices, that is essentially related to the surface structure. One of the most difficult aspects of surface bonds of InSb is preventing the formation of a native oxide on the InSb surface, in particular the surface based around the cap layer (AlInSb) towards achieving the desired Ohmic contact. The aim of this study is to investigate the electrical contact properties of pristine and treated AlInSb wafers using wet and dry etching. This investigation focuses on modification of the metal–semiconductor contact for InSb 2DEG in order to enhance the performance of future electronic devices. Therefore, wet and dry etching techniques present an approach of modifying the AlInSb surface prior to the metal deposition process without any oxide. This study has produced interesting results that show significant decreases of contact resistivity and sheet resistance, while the transfer length increases with etching depth due to leakage current in the cap layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Kendelewicz, P. Soukiassian, M.H. Bakshi, Z. Hurych, I. Lindau, and W.E. Spicer, Soft-x-ray photoemission study of chemisorption and fermi-level pinning at the Cs/GaAs (110) and K/GaAs (110) interfaces. Phys. Rev. B 38(11), 7568 (1988).

    Article  CAS  Google Scholar 

  2. C.W. Wilmsen, Physics and Chemistry of III–V Compound Semiconductor Interfaces (New York: A Division of Plenum Publishing Corporation, 1985).

    Book  Google Scholar 

  3. R.G. Copperthwaite, O.A. Kunze, J. Lloyd, J.A. Neely, and W. Tuma, Surface analysis of InSb by x-ray photoelectron spectroscopy (XPS). Z. Naturforschung A 33(5), 523–527 (1978).

    Article  Google Scholar 

  4. C.W. Wllmsen, Oxide layers on III–V compound semiconductor. Thin Solid Films 39, 105–117 (1976).

    Article  Google Scholar 

  5. D.C. Look, A two-layer magneto-TLM contact resistance model: application to modulation-doped FET structures. IEEE Trans. Electron Devices 35(2), 133–138 (1988).

    Article  Google Scholar 

  6. D.C. Look, Mobility measurements with a standard contact resistance pattern. IEEE Electron Device Lett. 8(4), 162–164 (1987).

    Article  Google Scholar 

  7. W. Shockley, Research and investigation of inverse epitaxial UHF power transistors (1964)

  8. G.K. Reeves and H.B. Harrison, Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett. 3, 111–113 (1982).

    Article  Google Scholar 

  9. H. Berger, Contact resistance on diffused resistors. in: 1969 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE. vol. 12, (1969), pp. 160–161

  10. H. Murrmann and D. Widmann, Current crowding on metal contacts to planar devices. IEEE Trans. Electron Devices 16(12), 1022–1024 (1969).

    Article  Google Scholar 

  11. D.K. Schroder, Semiconductor Material and Device Characterization (Hoboken: Wiley, 2006).

    Google Scholar 

  12. A.J. Willis and A.P. Botha, Investigation of ring structures for metal-semiconductor contact resistance determination. Thin Solid Films 146(1), 15–20 (1987).

    Article  Google Scholar 

  13. L.F. Lester, J.M. Brown, J.C. Ramer, L. Zhang, S.D. Hersee, and J.C. Zolper, Nonalloyed Ti/Al Ohmic contacts to n-type GaN using high-temperature premetallization anneal. Appl. Phys. Lett. 69(18), 2737–2739 (1996).

    Article  CAS  Google Scholar 

  14. G.K. Reeves, Specific contact resistance using a circular transmission line model. Solid State Electron. 23(5), 487–490 (1980).

    Article  CAS  Google Scholar 

  15. B. Jacobs, M.C.J.C.M. Kramer, E.J. Geluk, and F. Karouta, Optimisation of the Ti/Al/Ni/Au Ohmic contact on AlGaN/GaN FET structures. J. Cryst. Growth 241(1), 15–18 (2002).

    Article  CAS  Google Scholar 

  16. G.S. Marlow and M.B. Das, The effects of contact size and non-zero metal resistance on the determination of specific contact resistance. Solid State Electron. 25(2), 91–94 (1982).

    Article  CAS  Google Scholar 

  17. M.C.J.C.M. Kramer, Fabrication and Characterization of Metal-Semiconductor Contacts for Application in AlxGa1-xN/GaN HEMTs (Eindhoven: Eindhoven University of Technology, 2000).

    Google Scholar 

  18. J.H. Klootwijk, C.E. Timmering, Merits and limitations of circular TLM structures for contact resistance determination for novel III-V HBTs. in: Proceedings of the 2004 International Conference on Microelectronic Test Structures (IEEE Cat. No. 04CH37516). IEEE, (2004), (pp. 247–252)

  19. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Heidelberg: Wiley, 2009).

    Book  Google Scholar 

  20. M. Grundmann, The Physics of Semiconductors An Introduction Including Nanophysics and Applications (Berlin: Springer, 2010).

    Book  Google Scholar 

  21. S.R. Jost, V.F. Meikleham, and T.H. Myers, InSb: a key material for IR detector applications. Mater. Res. Soc. 90, 429–435 (1987).

    Article  CAS  Google Scholar 

  22. A.A. Richards, Applications for high-speed infrared imaging. in: 26th International Congress on High-Speed Photography and Photonics. SPIE. vol. 5580, (2005), pp. 137–145

  23. P.J. Treado, I.W. Levin, and E.N. Lewis, Indium antimonide (InSb) focal plane array (FPA) detection for near-infrared imaging microscopy. Appl. Spectrosc. 48(5), 607–615 (1994).

    Article  CAS  Google Scholar 

  24. S. Jubair, Technology Development for Nanoscale InSb Quantum Split-Gate Structures (Cardiff: Cardiff University, 2019).

    Google Scholar 

  25. K.M. Chang, J.J. Luo, C.D. Chiang, and K.C. Liu, Wet etching characterization of InSb for thermal imaging applications. Jpn. J. Appl. Phys. 45(3R), 1477 (2006).

    Article  CAS  Google Scholar 

  26. N. Jones, C. Norris, C.L. Nicklin, P. Steadman, J.S.G. Taylor, C.F. McConville, and A.D. Johnson, An x-ray diffraction study of oxide removal from InSb (001) substrates. Appl. Surf. Sci. 123(124), 141–145 (1998).

    Article  Google Scholar 

  27. D. Seo, J. Na, S. Lee, and S. Lim, Behavior of GaSb (100) and InSb (100) surfaces in the presence of H2O2 in acidic and basic cleaning solutions. Appl. Surf. Sci. 399, 523–534 (2017).

    Article  CAS  Google Scholar 

  28. V. Pusino, C. Xie, A. Khalid, I.G. Thayne, and D.R.S. Cumming, Development of InSb dry etch for mid-IR applications. Microelectron. Eng. 153, 11–14 (2016).

    Article  CAS  Google Scholar 

  29. A.N. Pal, S.I. Müller, E. Thomas, T. Klaus, C. Thomas, and P. Christophe, Influence of etching processes on electronic transport in mesoscopic InAs/GaSb quantum well devices influence of etching processes on electronic transport in mesoscopic InAs/GaSb quantum well devices. AIP Adv. 5, 1–5 (2015).

    Article  Google Scholar 

  30. G.-D. Zhang, W.-G. Sun, S.-L. Xu, H.-Y. Zhao, H.-Y. Su, and H.-Z. Wang, Inductively coupled plasma-reactive ion etching of InSb using CH4/H2 /Ar plasma. Am. Vac. Soc. 27, 681–685 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawkat Ismael Jubair.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jubair, S.I. Influence of Dry and Wet Etching on AlInSb Contact Resistivity, Transfer Length, and Sheet Resistance Using Circular Transmission Model. J. Electron. Mater. 52, 2718–2721 (2023). https://doi.org/10.1007/s11664-023-10234-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10234-y

Keywords

Navigation