Skip to main content
Log in

Starch-Assisted Stable Synthesis of CdS Nanoparticles for Enhanced Electrical and Optical Properties

  • Topical Collection: Advanced Materials for Energy Generation and Storage
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) nanoparticles (NPs) were synthesized using a biodegradable starch [(C6H10O5)n] polymer as a capping and stabilizing agent. The as-synthesized CdS NPs were highly crystalline and had a hexagonal structure with an average particle size of ~ 10.5 nm. Fourier transform infrared (FTIR) spectroscopy analysis was used to examine the presence and interactions of starch on the surface of the nanoparticles. The electronic behavior of CdS NPs was analyzed using I–V measurements and impedance spectroscopy. These NPs exhibit semiconducting behavior with resistance and conductance values of 1.78 ×108 Ω, and 5.61 × 10−9 S, respectively. Photoresponse studies of CdS NPs showed significant photoresponse with improved photocurrent under light conditions. The dielectric measurements were done at different temperatures, during both the heating and cooling cycles, and the frequency dependence and temperature dependence of dielectric constant and dielectric loss were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Jia, J. Wu, J. Dong, L. Fan, M. Huang, J. Lin, and Z. Lan, Cadmium sulfide as an efficient electron transport material for inverted planar perovskite solar cells. Chem. Commun. 54, 3170 (2018).

    Article  CAS  Google Scholar 

  2. K.-J. Wu, K.-C. Chu, C.-Y. Chao, Y.-F. Chen, C.-W. Lai, C.-C. Kang, C.-Y. Chen, and P.-T. Chou, CdS nanorods imbedded in liquid crystal cells for smart optoelectronic devices. Nano Lett. 7, 1908 (2007).

    Article  CAS  Google Scholar 

  3. E. Alkuam, E. Badradeen, and G. Guisbiers, Influence of CdS morphology on the efficiency of dye-sensitized solar cells. ACS Omega 3, 13433 (2018).

    Article  CAS  Google Scholar 

  4. A.K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I.D.W. Samuel, Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. J. Phys. Chem. C 120, 1871 (2016).

    Article  CAS  Google Scholar 

  5. J. Xu, E. Oksenberg, R. Popovitz-Biro, K. Rechav, and E. Joselevich, Bottom-up tri-gate transistors and submicrosecond photodetectors from guided CdS nanowalls. J. Am. Chem. Soc. 139, 15958 (2017).

    Article  CAS  Google Scholar 

  6. Y. Fang, Z. Li, Y. Jiang, X. Wang, H.-Y. Chen, N. Tao, and W. Wang, Intermittent photocatalytic activity of single CdS nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 114, 10566 (2017).

    Article  CAS  Google Scholar 

  7. S. Smrithi, N. Kottam, A. Narula, G. Madhu, R. Mohammed, and R. Agilan, Carbon dots decorated cadmium sulphide heterojunction-nanospheres for the enhanced visible light driven photocatalytic dye degradation and hydrogen generation. J. Colloid Interface Sci. 627, 956 (2022).

    Article  CAS  Google Scholar 

  8. Y.A.E. Dahshoury, M. Ahmed, and M.G. Elmahgary, Photocatalytic hydrogen production on the surface of cadmium sulphide and other different doping nanomaterials dispersed on zinc oxide. Nanotechnol. Environ. Eng. 7, 575 (2022).

    Article  CAS  Google Scholar 

  9. D.B. Pal, A.K. Rathoure, and A. Singh, Investigation of surface interaction in rGO-Cds photocatalyst for hydrogen production: an insight from XPS studies. Int. J. Hydrogen Energy 46, 26757 (2021).

    Article  CAS  Google Scholar 

  10. S. Ghosh, P. Das, B. Bairy, R. Ghosh, S. Dam, and M.B. Sen, Exploration of photoreduction ability of reduced graphene oxide–cadmium sulphide hetero-nanostructures and their intensified activities against harmful microbes. J. Mater. Sci. 56, 16928 (2021).

    Article  CAS  Google Scholar 

  11. Y. Ma, F. Yan, L. Liu, W. Wei, Z. Zhao, and J. Sun, The enhanced photo-thermal therapy of surface improved photoactive cadmium sulfide (CdS) quantum dots entrenched graphene oxide nanoflakes in tumor treatment. J. Photochem. Photobiol. B. 192, 34 (2019).

    Article  CAS  Google Scholar 

  12. I. Uddin, Onsite visual detection of heavy metal contaminants using impregnated strip. J. Photochem. Photobiol. A 421, 113512 (2021).

    Article  CAS  Google Scholar 

  13. R.K. Sonker, B. Yadav, V. Gupta, and M. Tomar, Synthesis of CdS nanoparticle by sol–gel method as low temperature NO2 sensor. Mater. Chem. 239, 121975 (2020).

    CAS  Google Scholar 

  14. T. Senasu, K. Hemavibool, and S. Nanan, Hydrothermally grown CdS nanoparticles for photodegradation of anionic azo dyes under UV-visible light irradiation. RSC Adv. 8, 22592 (2018).

    Article  CAS  Google Scholar 

  15. M. Kristl, I. Ban, A. Danč, V. Danč, and M. Drofenik, A sonochemical method for the preparation of cadmium sulfide and cadmium selenide nanoparticles in aqueous solutions. Ultrason. Sonochem. 17, 916 (2010).

    Article  CAS  Google Scholar 

  16. A. Singh, D. Singh, B. Ahmed, and A.K. Ojha, Sun/UV-light driven photocatalytic degradation of rhodamine B dye by Zn doped CdS nanostructures as photocatalyst. Mater. Chem. Phys. 277, 125531 (2022).

    Article  CAS  Google Scholar 

  17. M. Darwish, A. Mohammadi, and N. Assi, Microwave-assisted polyol synthesis and characterization of pvp-capped CdS nanoparticles for the photocatalytic degradation of tartrazine. Mater. Res. Bull. 74, 387 (2016).

    Article  CAS  Google Scholar 

  18. M. Ganiga and J. Cyriac, Detection of PETN and RDX using a FRET-based fluorescence sensor system. Anal. Methods 7, 5412 (2015).

    Article  CAS  Google Scholar 

  19. J. Wang, X. Wu, Y. He, W. Guo, Q. Zhang, Y. Wang, and Z. Wang, Investigation of the electronic structure of CdS nanoparticles with sum frequency generation and photoluminescence spectroscopy. J. Phys. Chem. C 123, 27712 (2019).

    Article  CAS  Google Scholar 

  20. M. Martins, C. Toste, and I.A. Pereira, Enhanced light-driven hydrogen production by self-photosensitized biohybrid systems. Angew. Chem. Int. Ed. 60, 9055 (2021).

    Article  CAS  Google Scholar 

  21. H. Chauhan, Y. Kumar, and S. Deka, New synthesis of two-dimensional CdSe/CdS core@ shell dot-in-hexagonal platelet nanoheterostructures with interesting optical properties. Nanoscale 6, 10347 (2014).

    Article  CAS  Google Scholar 

  22. A. Alipour, M. Mansour Lakouraj, and H. Tashakkorian, Study of the effect of band gap and photoluminescence on biological properties of polyaniline/CdS QD nanocomposites based on natural polymer. Sci. Rep. (2021). https://doi.org/10.1038/s41598-020-79139-8.

    Article  Google Scholar 

  23. S. Bano, S.I. Raj, A. Khalilullah, A. Jaiswal, and I. Uddin, Selective and sensitive cation exchange reactions in the aqueous starch capped ZnS nanoparticles with tunable composition, band gap and color for the detection and estimation of Pb2+, Cu2+ and Hg2+. J. Photochem. Photobiol. A 405, 112925 (2021).

    Article  CAS  Google Scholar 

  24. F.J. Warren, M.J. Gidley, and B.M. Flanagan, Infrared spectroscopy as a tool to characterise starch ordered structure – a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 139, 35 (2016).

    Article  CAS  Google Scholar 

  25. N.V. Deshmukh, T.M. Bhave, A.S. Ethiraj, S. Sainkar, V. Ganesan, S. Bhoraskar, and S. Kulkarni, Photoluminescence and IV characteristics of a CdS-nanoparticles-porous-silicon heterojunction. Nanotechnology 12, 290 (2001).

    Article  CAS  Google Scholar 

  26. M.Z. Nawaz, L. Xu, X. Zhou, K.H. Shah, J. Wang, B. Wu, and C. Wang, CdS nanobelt-based self-powered flexible photodetectors with high photosensitivity. Mater. Adv. 2, 6031 (2021).

    Article  CAS  Google Scholar 

  27. L. Ma, X. Ai, X. Yang, X. Song, and X. Wu, Dielectric and conductivity relaxation of rGO@CdS nanocomposites via in situ assembly of CdS nanoparticles on an rGO layer. J. Phys. Chem. C 124, 25133 (2020).

    Article  CAS  Google Scholar 

  28. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford: Clarendon Press, 1873).

    Google Scholar 

  29. S. Suresh, Studies on the dielectric properties of CdS nanoparticles. Appl. Nanosci. 4, 325 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JKD and KK would like to acknowledge the UGC-DAE Consortium for Scientific Research, Kolkata Centre for the Collaborative Research Scheme (CRS) project (Grant No. UGC-DAE-CSR-KC/CRS/19/IBMS04/0465). IU acknowledges SRM University-AP for the timely financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatis Kumar Dash.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, I., Abzal, S.M., Kalyan, K. et al. Starch-Assisted Stable Synthesis of CdS Nanoparticles for Enhanced Electrical and Optical Properties. J. Electron. Mater. 52, 1710–1716 (2023). https://doi.org/10.1007/s11664-022-10198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10198-5

Keywords

Navigation