Skip to main content
Log in

Structural, Photoabsorption and Photocatalytic Characteristics of BiFeO3-WO3 Nanocomposites: An Attempt to Validate the Experimental Data Through SVM-Based Artificial Intelligence (AI)

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocomposites of bismuth ferrite-tungsten trioxide (BiFeO3-WO3) were synthesized from sol–gel reaction followed by processing at two different calcination temperatures, 550°C and 650°C. The calcined composite products were investigated using powder XRD, FE-SEM, EDX, UV–Vis and FTIR to assess the influence of calcination temperature on their structural, morphological, and optical absorption properties and their photocatalytic characteristics. A photodegradation efficiency test was conducted for the synthesized BiFeO3-WO3 nanocomposite powders, with methylene blue (MB) used as the dye source. The optimal experimental conditions required for the effective and maximized degradation of the MB pollutant were also determined, and the data authenticity was validated through an artificial intelligence (AI)-based support vector machine (SVM) tool. SVM predictions agreed reasonably well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.K. Marttinen, R.H. Kettunen, and J.A. Rintala, Occurrence and removal of organic pollutants in sewages and landfill leachates. Sci. Total Environ. 301, 1–12 (2003).

    Article  CAS  Google Scholar 

  2. K. Pazdzior, L. Bilinska, and S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 376, 120597 (2019).

    Article  CAS  Google Scholar 

  3. Q. Ke, Y. Zhang, X. Wu, X. Su, Y. Wang, H. Lin, R. Mei, M.Z. Yu Zhang, C. Hashmi, and J.C. Chen, Sustainable biodegradation of phenol by immobilized Bacillus sp SAS19 with porous carbonaceous gels as carriers. J. Environ. Manage 222, 185 (2018).

    Article  CAS  Google Scholar 

  4. O.S. Abu-Rizaiza, Modification of the standards of wastewater reuse in Saudi Arabia. Water Res. 33, 2601 (1999).

    Article  CAS  Google Scholar 

  5. J.A. Faby, F. Brissaud, and J. Bontoux, Wastewater reuse in France: water quality standards and wastewater treatment technologies. Water Sci Technol. 40, 37 (1999).

    Article  CAS  Google Scholar 

  6. G. Crini, and E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17, 145 (2019).

    Article  CAS  Google Scholar 

  7. F.C. Moreira, R.A.R. Boaventura, E. Brillas, and V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 202, 217 (2017).

    Article  CAS  Google Scholar 

  8. E. Manoli, and C. Samara, The removal of polycyclic aromatic hydrocarbons in the wastewater treatment process: experimental calculations and model predictions. Environ. Pollut. 151, 477 (2008).

    Article  CAS  Google Scholar 

  9. M. Mehrjouei, S. Müller, and D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209 (2015).

    Article  CAS  Google Scholar 

  10. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, and N. Biswas, A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2, 157 (2016).

    Article  CAS  Google Scholar 

  11. A. Fujishima, and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  12. N. Daneshvar, M.H. Rasoulifard, A.R. Khataee, and F. Hosseinzadeh, Removal of C.I. acid orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J. Hazard. Mater. 143, 95–101 (2007).

    Article  CAS  Google Scholar 

  13. A. Dandia, P. Saini, R. Sharma, and V. Parewa, Visible light driven perovskite-based photocatalysts: a new candidate for green organic synthesis by photochemical protocol. Curr. Opin. Green Sustain. Chem. 3, 100031 (2020).

    Article  Google Scholar 

  14. S. Irfan, Z. Zhuanghao, F. Li, Y.X. Chen, G.X. Liang, J.T. Luo, and F. Ping, Critical review: Bismuth ferrite as an emerging visible light active nanostructured photocatalyst. J. Mater Res. Technol. 8, 6375 (2019).

    Article  CAS  Google Scholar 

  15. Y. Huo, M. Miao, Y. Zhang, J. Zhu, and H. Li, Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability. Chem. Commun. 47, 2089 (2011).

    Article  CAS  Google Scholar 

  16. J. Jiang, J. Zou, M.N. Anjum, J. Yan, L. Huang, Y. Zhang, and J. Chen, Synthesis and characterization of wafer-like BiFeO3 with efficient catalytic activity. Solid State Sci. 13, 1779 (2011).

    CAS  Google Scholar 

  17. Y. Subramanian, B. Mishra, S. Mandal, R. Gubendiran, and Y.S. Chaudhary, Design of heterostructured perovskites for enhanced photocatalytic activity: insight into their charge carrier dynamics. Mater. Today: Proc. 35, 179 (2021).

    CAS  Google Scholar 

  18. Y. Ma, P. Lv, F. Duan, J. Sheng, S. Lu, H. Zhu, M. Du, and M. Chen, Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity. J. Alloys Comp. 834, 155158 (2020).

    Article  CAS  Google Scholar 

  19. D.P. DePuccio, P. Botella, B. O’Rourke, and C.C. Landry, Degradation of methylene blue using porous WO3, SiO2–WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. ACS Appl. Mater. Interf. 7, 1987 (2015).

    Article  CAS  Google Scholar 

  20. X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, and X. Zhang, Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ doping and superficial Pt loading for ethylene degradation under visible-light irradiation. Catal. Sci. Technol. 9, 652–658 (2019).

    Article  CAS  Google Scholar 

  21. M.B. Tahir, G. Nabi, N.R. Khalid, and N.R. Khalid, Synthesis of nanostructured based WO3 materials for photocatalytic applications. J. Inorg. Organomet. Polym. 28, 777 (2018).

    Article  CAS  Google Scholar 

  22. J. Mioduska, A. Zielińska-Jurek, M. Janczarek, J. Hupka, The effect of calcination temperature on structure and photocatalytic properties of WO3/TiO2 nanocomposites. J. Nanomaterials. 3145912 (2016).

  23. Y. Subramanian, B. Mishra, P.M. Rajashree, N. Kumar et al., Efficient degradation of endocrine-disrupting compounds by heterostructured perovskite photocatalysts and its correlation with their ferroelectricity. New J. Chem. 46, 11851 (2022).

    Article  CAS  Google Scholar 

  24. N.M. Mahmoodi, J. Abdi, M. Taghizadeh, A. Taghizadeh, B. Hayati, A.A. Shekarchi, and M. Vossoughi, Activated carbon/metal-organic framework nanocomposite: preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. J. Environ. Manag. 233, 660 (2019).

    Article  CAS  Google Scholar 

  25. M. Ateia, M.G. Alalm, D. Awfa, M.S. Johnson, and C. Yoshimura, Modeling the degradation and disinfection of water pollutants by photocatalysts and composites: a critical review. Sci. Total Environ. 698, 134197 (2019).

    Article  Google Scholar 

  26. M.A.S. VaezZarringhalam MoghaddamAlijani, Optimization and modeling of photocatalytic degradation of Azo dye using a response surface methodology (RSM) Based on the central composite design with immobilized titania nanoparticles. Indus. Eng. Chem. Res. 51, 4199 (2012).

    Article  Google Scholar 

  27. Y. Subramanian, V. Ramasamy, R.K. Gubendiran, G.R. Srinivasan, and D. Arulmozhi, Structural, optical, thermal and photocatalytic dye degradation properties of BiFeO3-WO3 Nanocomposites. J. Electron. Mater. 47, 7212 (2018).

    Article  CAS  Google Scholar 

  28. H. Heryanto, B. Abdullah, and D. Tahir, Analysis of structural properties of X-ray diffraction for composite copper-activated carbon by modified Williamson-Hall and size-strain plotting methods. J. Phys: Confer. Series. 1080, 012007 (2018).

    Google Scholar 

  29. J. Cai, W. Xin, G. Liu, D. Lin, and D. Zhu, Effect of calcination temperature on structural properties and photocatalytic activity of Mn-C-codoped TiO2. Mater. Res. 19, 401 (2016).

    Article  CAS  Google Scholar 

  30. R. Ghosh, K.S. Asha, SMd. Pratik, A. Datta, R. Nath, and S. Mandal, Synthesis, structure, photocatalytic and magnetic properties of an oxo-bridged copper dimer. RSC Adv. 4, 21195 (2014).

    Article  CAS  Google Scholar 

  31. U. OparaKrasˇovec, A.S. ˇurcaVuk, and B. Orel, IR Spectroscopic studies of charged–discharged crystalline WO3 films. Electrochim. Acta 13, 1921 (2001).

    Article  Google Scholar 

  32. T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, X. Sun, and Y. Huang, Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property. Mater. Res. Bull. 59, 6 (2014).

    Article  CAS  Google Scholar 

  33. S. Alkaykh, A. Mbarek, and E.E. Ali-Shattle, Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon. 6, e03663 (2020).

    Article  Google Scholar 

  34. Y. Subramanian, V. Ramasamy, R. Karthikeyan, G. Srinivasan, D. Arulmozhi, R. Gubendiran, and M. Sriramalu, Investigations on the enhanced dye degradation activity of heterogeneous BiFeO3-GdFeO3 nanocomposite photocatalyst. Heliyon 5, e01831 (2019).

    Article  Google Scholar 

  35. R. Cheng, L. Shen, J. Yu, S. Xiang, and X. Zheng, Photocatalytic inactivation of bacteriophage f2 with Ag3PO4/g-C3N4 composite under visible light irradiation: performance and mechanism. Catalysts 8, 406 (2018).

    Article  Google Scholar 

  36. H. Yang, A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 142, 111406 (2021).

    Article  CAS  Google Scholar 

  37. T. Cheng, H. Gao, G. Liu, Z. Pu, S. Wang, Z. Yi, X. Wu, and H. Yang, Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions. Colloids Surf., A 633, 127918 (2022).

    Article  CAS  Google Scholar 

  38. Y. Gu, B. Guo, Z. Yi, X. Wu, J. Zhang, and H. Yang, Morphology modulation of hollow-shell ZnSn(OH)6 for enhanced photodegradation of methylene blue. Colloids Surf., A 653, 129908 (2022).

    Article  CAS  Google Scholar 

  39. M.S. Mazloom, F. Rezaei, A. Hemmati-Sarapardeh, M.M. Husein, S. Zendehboudi, and A. Bemani, Artificial intelligence based methods for asphaltenes adsorption by nanocomposites: application of group method of data handling, least squares support vector machine, and artificial neural networks. Nanomaterials 10, 890 (2020).

    Article  CAS  Google Scholar 

  40. Y. Subramanian, R. Veena, S. Muhammed Ali, A. Kumar, R. Gubediran, A. Dhanasekaran, D. Gurusamy, and K. Muniandi, Artificial intelligence technique based performance estimation of solid oxide fuel cells. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.06.412.

    Article  Google Scholar 

  41. T.A. Oyehan, M.A. Liadi, and I.O. Alade, Modeling the efficiency of TiO2 photocatalytic degradation of MTBE in contaminated water: a support vector regression approach. SN Appl. Sci. 1, 386 (2019).

    Article  CAS  Google Scholar 

  42. T. Zhang, C. Wu, Z. Xing, J. Zhang, S. Wang, X. Feng, J. Zhu, X. Lu, and L. Mu, machine learning prediction of photocatalytic lignin cleavage of C-C bonds based on density functional theory. Mater. Today Sustain. 20, 100256 (2022).

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors, Dr. G.Ramesh Kumar, wishes to acknowledge all his collaborators for their kind research and moral support to bring this work to the level of publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Veena or Ramesh Kumar Gubendiran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, Y., Gajendiran, J., Veena, R. et al. Structural, Photoabsorption and Photocatalytic Characteristics of BiFeO3-WO3 Nanocomposites: An Attempt to Validate the Experimental Data Through SVM-Based Artificial Intelligence (AI). J. Electron. Mater. 52, 2421–2431 (2023). https://doi.org/10.1007/s11664-022-10188-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10188-7

Keywords

Navigation