Skip to main content
Log in

Highly Sensitive Humidity Sensor Based on Freestanding Graphene Oxide Sheets for Respiration and Moisture Detection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) is regarded as one of the best materials for humidity sensing owing to its unique structure (defect enriched) and excellent adsorption properties. Herein, GO was prepared by modified Hummers' method for the fabrication of highly sensitive humidity sensors. The strong diffraction peak at 10.06° in the x-ray diffraction (XRD) pattern and increased ID/IG ratio (0.96) for GO obtained from Raman spectroscopy indicate the formation of GO. The Brunauer–Emmett–Teller (BET) analysis for GO revealed a surface area of 17 m2/g and a pore radius of 20 Å. The surface morphology and topography of GO sheets were examined by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, respectively. For humidity sensing application, a device was prepared by drop casting of GO on interdigitated electrodes and its sensitivity was investigated at room temperature (26 °C) under a different relative humidity (RH) level of 11–97% RH. The GO sensor exhibited high sensing response at 11–97–11% RH with good response (13 s)/recovery time (32 s). Notably, the sensor displayed very small humidity hysteresis (0.26%), excellent repeatability and long-term stability (1.13% decrease). Moreover, the proposed sensor quickly responded to different human respiration including nose breath, normal/fast (exercise) mouth breathing, and human skin moisture (sweat) as well as simple spoken words. This finding indicates that flexible, freestanding GO sheets have broad applications in smart humidity sensing devices and medical care treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.Y. Lee and G.B. Lee, Humidity sensors: a review. Sens. Lett. 3, 1 (2005).

    Article  CAS  Google Scholar 

  2. L. Ma, R. Wu, A. Patil, S. Zhu, Z. Meng, H. Meng, C. Hou, Y. Zhang, Q. Liu, R. Yu, and J. Wang, Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 1904549, 1 (2019).

    Google Scholar 

  3. Z. Duan, Y. Jiang, M. Yan, S. Wang, Z. Yuan, Q. Zhao, P. Sun, G. Xie, X. Du, and H. Tai, Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl. Mater. Interfaces. 11, 21840 (2019).

    Article  CAS  Google Scholar 

  4. H. Farahani, R. Wagiran, and M.N. Hamidon, Humidity sensors, principle, mechanism and fabrication. Sensors 14, 7881 (2014).

    Article  Google Scholar 

  5. L. Lan, X. Le, H. Dong, J. Xie, Y. Ying, and J. Ping, One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens. Bioelectron. 165, 112360 (2020).

    Article  CAS  Google Scholar 

  6. Y. Zhang, W. Zhang, Q. Li, C. Chen, and Z. Zhang, Design and fabrication of a novel humidity sensor based on ionic covalent organic framework. Sens. Actuators B Chem. 324, 128733 (2020).

    Article  CAS  Google Scholar 

  7. Z.H. Duan, Q.N. Zhao, C.Z. Li, S. Wang, Y.D. Jiang, Y.J. Zhang, B.H. Liu, and H.L. Tai, Enhanced positive humidity sensitive behaviour of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 40, 1762 (2021).

    Article  CAS  Google Scholar 

  8. J. Yang, C. Guan, Z. Yu, M. Yang, J. Shi, P. Wang, J. Yang, and L. Yuan, High sensitivity humidity sensor based on gelatin coated side-polished in-fiber directional coupler. Sens. Actuators B Chem. 305, 127555 (2020).

    Article  CAS  Google Scholar 

  9. Y. Yao, X. Huang, B. Zhang, Z. Zhang, D. Hou, and Z. Zhou, Facile fabrication of high sensitivity cellulose nanocrystals based QCM humidity sensors with asymmetric electrode structure. Sens. Actuators B Chem. 302, 127192 (2020).

    Article  CAS  Google Scholar 

  10. S. Ghosh, R. Ghosh, P.K. Guha, and T.K. Bhattacharya, Humidity sensor based on high proton conductivity of graphene oxide. IEEE Trans. Nanotechnol. 14, 931 (2015).

    Article  CAS  Google Scholar 

  11. Z. Duan, Y. Jiang, Q. Zhao, Qi. Huang, Y. Si Wang, Y. Zhang, B. Wu, Y. Liu, and H. Tai. Zhen, Daily writing carbon ink: Novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuators B Chem. 339, 129884 (2021).

    Article  CAS  Google Scholar 

  12. T.A. Blanka, L.P. Eksperiandovaa, and K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B Chem. 228, 416 (2016).

    Article  Google Scholar 

  13. R. Shevate, M.A. Haque, F.H. Akhtar, L.F. Villalobos, T. Wu, and K.V. Peinemann, Embedding 1D conducting channels into 3D isoporous polymer films for high-performance humidity sensing. Angew. Chem. Int. Ed. 57, 11218 (2018).

    Article  CAS  Google Scholar 

  14. X. Zhao, X.D. Chen, X. Yu, X. Ding, X.L. Yu, and K. Tang, High sensitivity humidity sensor and its application in nondestructive testing for wet paper. Sens. Actuators B Chem. 301, 127048 (2019).

    Article  CAS  Google Scholar 

  15. Y. Zhang, Z. Duan, H. Zou, and M. Ma, Drawn a facile sensor: a fast response humidity sensor based on pencil-trace. Sens. Actuators B Chem. 261, 345 (2018).

    Article  CAS  Google Scholar 

  16. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  Google Scholar 

  17. S. Park and R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217 (2009).

    Article  CAS  Google Scholar 

  18. Y.H. Kim, S.J. Kim, Y.J. Kim, Y.S. Shim, S.Y. Kim, B.H. Hong, and H.W. Jang, Self-activated transparent all- graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9, 10453 (2015).

    Article  CAS  Google Scholar 

  19. A.K. Geim and K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  20. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, and M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013).

    Article  Google Scholar 

  21. J.G. Contreras and F.C. Briones, Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209 (2015).

    Article  Google Scholar 

  22. A. Lerf, H. He, Y.M. Forster, and J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477 (1998).

    Article  CAS  Google Scholar 

  23. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).

    Article  CAS  Google Scholar 

  24. Q. Fatima, A.A. Haidiry, Z. Yao, Y. He, Z. Li, L. Sun, and L. Xie, The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 1, 1319 (2019).

    Article  CAS  Google Scholar 

  25. J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir 24, 10560 (2008).

    Article  CAS  Google Scholar 

  26. Y. Wang, L. Zhang, Z. Zhang, P. Sun, and H. Chen, High-sensitivity wearable and flexible humidity sensor based on graphene oxide/non-woven fabric for respiration monitoring. ACS Langmuir 36, 9443 (2020).

    Article  CAS  Google Scholar 

  27. C.-W. Chiu, C.-Y. Huang, J.-W. Li, and C.-L. Li, Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces. 14, 42441 (2022).

    Article  CAS  Google Scholar 

  28. S. Zou, L.-Q. Tao, G. Wang, C. Zhu, Z. Peng, H. Sun, Y. Li, Y. Wei, and T.-L. Ren, Humidity-based human-machine interaction system for healthcare applications. ACS Appl. Mater. Interfaces. 14, 12606 (2022).

    Article  CAS  Google Scholar 

  29. X. Chen, Y. Li, X. Wang, and H. Yu, Origami paper-based stretchable humidity sensor for textile-attachable wearable electronics. ACS Appl. Mater. Interfaces. 14, 36227 (2022).

    Article  CAS  Google Scholar 

  30. B.C. Brodie, On the atomic weight of graphite. Phils Trans. R. Soc. 149, 249 (1859).

    Article  Google Scholar 

  31. W.S. Hummers and R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  32. W. Raza and S.B. Krupanidhi, Engineering defects in graphene oxide for selective ammonia and enzyme-free glucose sensing and excellent catalytic performance for para-nitrophenol reduction. ACS Appl. Mater. Interfaces 10, 25285 (2018).

    Article  CAS  Google Scholar 

  33. D. Tripathi and P. Chauhan, Highly responsive room-temperature operable ethanol gas sensor based on thermally reduced graphene oxide. ECS J. Solid State Sci. Technol. 11, 087002 (2022).

    Article  Google Scholar 

  34. L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A Phys. Chem. 81A, 89 (1977).

    Article  Google Scholar 

  35. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014).

    Article  CAS  Google Scholar 

  36. A. Karaphun, C. Phrompet, W. Tuichai, N. Chanlek, C. Sriwong, and C. Ruttanapun, The influence of annealing on a large specific area and enhancing electrochemical properties of reduced graphene oxide to improve the performance of the active electrode of supercapacitor devices. Mater. Sci. Eng. B. 264, 114941 (2021).

    Article  CAS  Google Scholar 

  37. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Hydrazine reduction of graphite- and graphene oxide. Carbon 49, 3019 (2011).

    Article  CAS  Google Scholar 

  38. A.C. Ferrari and J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B. 64, 075414 (2001).

    Article  Google Scholar 

  39. M. Sharma, S. Rani, D.K. Pathak, R. Bhatia, R. Kumar, and I. Sameera, Temperature dependent Raman modes of reduced graphene oxide: effect of anharmonicity, crystallite size and defects. Carbon 184, 437 (2021).

    Article  CAS  Google Scholar 

  40. F. Khurshid, M. Jeyavelan, T. Hussain, M. Sterlin Leo Hudson, and S. Nagrajan, Ammonia gas adsorption study on graphene oxide based sensing device under different humidity conditions. Mater. Chem. Phys. 242, 122485 (2020).

    Article  CAS  Google Scholar 

  41. P. Dash, T. Dash, T.K. Rout, A.K. Sahu, S.K. Biswaal, and B.K. Mishra, Preparation of graphene oxide by dry planetary ball milling process from natural graphite. RSC Adv. 6, 12657 (2016).

    Article  CAS  Google Scholar 

  42. B. Lesiak, G. Trykowski, J. Toth, S. Biniak, L. Kover, N. Rangam, L. Stobinski, and A. Malolepszy, Chemical and structural properties of reduced graphene oxide-dependence on the reducing agent. J. Mater. Sci. 56, 3738 (2021).

    Article  CAS  Google Scholar 

  43. M.M. Lucchese, F. Stavale, E.H. Martins Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, and A. Jorio, Quantifying ion-induced defects and Raman relaxation in graphene. Carbon 48, 1592 (2010).

    Article  CAS  Google Scholar 

  44. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, and Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide. Energy Environ. Sci. 4, 2826 (2011).

    Article  CAS  Google Scholar 

  45. T.K. Shruthi, M.S. Kumar, M. Arjunan, A. Pratap, and N. Chandrasekaran, Graphene oxide aided structural tailoring of 3D N-doped amorphous carbon network for enhanced energy storage. RSC Adv. 5, 93423 (2015).

    Article  CAS  Google Scholar 

  46. A.A. Haidry, Z. Wang, Q. Fatima, A. Zavabeti, L. Xie, H. Zhu, and Z. Li, Thermally reduced graphene oxide showing n- to p-type electrical response inversion with water adsorption. Appl. Surf. Sci. 531, 142875 (2020).

    Article  Google Scholar 

  47. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, and M.A. Atieh, XPS and structural studies of high-quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram. Int. 45, 14439 (2019).

    Article  CAS  Google Scholar 

  48. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, and J. Sloan, Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3, 2547 (2009).

    Article  CAS  Google Scholar 

  49. L.A. Perez, N. Bajales, and G.I. Lacconi, Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. Appl. Surf. Sci. 495, 143539 (2019).

    CAS  Google Scholar 

  50. E. Gacka, L. Majchrzycki, and B. Marciniak, Effect of graphene oxide flakes size and number of layers on photocatalytic hydrogen production. Sci. Rep. 11, 15969 (2021).

    Article  CAS  Google Scholar 

  51. R. Si, X. Xie, T. Li, J. Zheng, C. Cheng, S. Huang, and C. Wang, TiO2/(K, Na)NbO3 nanocomposite for boosting humidity-sensing performances. ACS Sens. 5, 1345 (2020).

    Article  CAS  Google Scholar 

  52. M.R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S.-I. Noro, T. Yamada, H. Kitagawa, and S. Hayami, Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 135, 8097 (2013).

    Article  CAS  Google Scholar 

  53. S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn, J.E. Lee, D.H. Kim, Y.-S. Shim, K.C. Kwon, K.S. Choi, H.J. Yoo, J.M. Suh, M. Ko, J.-H. Lee, M.J. Lee, S.Y. Kim, M.H. Lee, and H.W. Jang, Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016 (2018).

    Article  CAS  Google Scholar 

  54. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456 (1995).

    Article  CAS  Google Scholar 

  55. P.G. Su and Z.M. Lu, Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films. Sens. Actuators B Chem. 211, 157 (2015).

    Article  CAS  Google Scholar 

  56. X. Feng, W. Chen, and L. Yan, Free-standing dried foam films of graphene oxide for humidity sensing. Sens. Actuators B 215, 316 (2015).

    Article  CAS  Google Scholar 

  57. G. Naik and S. Krishnaswamy, Room-temperature humidity sensing using graphene oxide thin film. Sci. Res. 5, 2169 (2016).

    Google Scholar 

  58. S.-H. Hwang, D. Kang, R.S. Ruoff, H.S. Shin, and Y.B. Park, Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano 8, 6739 (2014).

    Article  CAS  Google Scholar 

  59. G. Jia, X. Ao Zheng, L. Wang, L. Zhang, C. Li, Y. Li, and L. Cao. Zhang, Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor. Sens. Actuators B Chem. 346, 130507 (2021).

    Article  CAS  Google Scholar 

  60. Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, and X. Du, Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sens. Actuators B Chem. 234, 145 (2016).

    Article  CAS  Google Scholar 

  61. A. Leong, S. Seeneevassen, T. Saha, V. Swamy, and N. Ramakrishnan, Low hysteresis relative humidity sensing characteristics of graphene oxide-gold nanocomposite coated langasite crystal microbalance. Surf. Interfaces 23, 100964 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was received through the University Grants Commission (UGC) New Delhi, India. The authors acknowledge the Motilal Nehru National Institute of Technology (MNNIT), Prayagraj, for AFM and XRD facility. The authors are thankful to the Indian Institute of Technology Kanpur (MSE facilities), Kanpur, India, for Raman characterization, CSIR-CSMCRI, Bhavnagar, Gujarat, for BET surface area analysis, and the Birbal Sahni Institute of Palaleosciences (BSIP), Lucknow, for FE-SEM of the sample.

Author information

Authors and Affiliations

Authors

Contributions

DT: Writing-original draft, Writing-review & editing, Experimental data analysis, Methodology, Conceptualization, Investigation, Data curation, Visualization, Resources, Software. ST: Methodology, Formal Analysis, Validation, RKR: Experimental, Data curation. PC: Conceptualization, Supervision, Visualization, Formal analysis and Validation.

Corresponding author

Correspondence to Divya Tripathi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 350 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Tripathi, S., Rawat, R.K. et al. Highly Sensitive Humidity Sensor Based on Freestanding Graphene Oxide Sheets for Respiration and Moisture Detection. J. Electron. Mater. 52, 2396–2408 (2023). https://doi.org/10.1007/s11664-022-10186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10186-9

Keywords

Navigation