Skip to main content
Log in

Morphological and Photophysical Tempering in Spinel MgAl2O4 Synthesized by a Novel Citrate Route Via a Suitable Annealing Scheme

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Spinel MgAl2O4 nanopowder synthesized by a novel citrate sol–gel process followed by annealing at different temperatures has been explored. Thermogravimetric and differential thermal analyses have been used to investigate the thermal qualities, and confirmed the best annealed temperature (1073 K). x-ray diffraction was used to examine the crystallinity and phase purity for the annealed samples. Fourier-transform infrared spectroscopy and electron microscopy (SEM-TEM) identified the functional groups and their morphology. The optical absorption data infer 5.12–1.8 eV band gap values (Eg) which can be significantly tailored via annealing. The thermal dependency of the emission spectra has been successfully demonstrated at two excitations, i.e. band-to-band excitation and defect-related. At 225 nm (Eg < Eex) excitation, the emissions were in the violet-blue region, while at 325 nm (Eg > Eex) excitation, green-orange transitions dominated. The prominent emissions were further emphasized by specific color coordinates in their CIE chromaticity graphs. The annealed MgAl2O4 spinel has a higher decay constant due to an increase in radiative centers. The electronic trapping–detrapping mechanism in the overall emissions is contributed by band-to-band excitonic, shallow traps and deep states, and is also comprised of induced antisites transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. A. Pillea, H. Spiridigliozzia, M. Amamraa, T. Billetonb, M. Zaghriouic, E. Feldbachd, A. Kanaeva, and F. Schoenstein, Morphology and luminescence of MgAl2O4 ceramics obtained via spark plasma sintering. Ceram. Int. 45, 8305 (2019).

    Article  Google Scholar 

  2. V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, Luminescence and electron paramagnetic resonance investigation on ultra violet emitting Gd doped MgAl2O4 phosphors. J. Lumin. 143, 162 (2013).

    Article  CAS  Google Scholar 

  3. A.F. Zatsepin, A.N. Kiryakov, D.A. Zatsepin, Y.V. Shchapova, and N.V. Gavrilov, Structural and electron-optical properties of transparent nanocrystalline MgAl2O4 spinel implanted with copper ions. J. Alloys Compd 834, 154993 (2020).

    Article  CAS  Google Scholar 

  4. A. Lushchik, E. Feldbach, E.A. Kotomin, I. Kudryavtseva, V.N. Kuzovkov, A.I. Popov, V. Seeman, and E. Shablonin, Distinctive features of diffusion-controlled radiation defect recombination in stoichiometric magnesium aluminate spinel single crystals and transparent polycrystalline ceramics. Sci. Rep. 10, 7810 (2020).

    Article  CAS  Google Scholar 

  5. G. Pilania, V. Kocevski, J.A. Valdez, C.R. Kreller, and B.P. Uberuaga, Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Commun. Mater. 1, 84 (2020).

    Article  Google Scholar 

  6. S. V. Motloung, F. B. Dejene, M. E. Sithole, L. F. Koao, O. M. Ntwaeaborwa, H. C. Swart, and T.E. Motaung, The effects of Cd2+ concentration on the structure, optical and luminescence properties of MgAl2O4:x% Cd2+ (0< x < 1.75) nanophosphor prepared by sol–gel method, J. Electron. Mater. 45, 4796 (2016)

  7. Y. Ma and X. Liu, Kinetics and thermodynamics of Mg-Al disorder in MgAl2O4-spinel: a review. Molecules 24, 1704 (2019).

    Article  CAS  Google Scholar 

  8. G.H. Sun, Q.L. Zhang, J.Q. Luo, L.C. Li, Z. Deng, and R.G. Zhang, The effect of annealing on spectral characteristics of the Ti-doped MgAl2O4 crystal. J. Lumin. 234, 117956 (2021).

    Article  CAS  Google Scholar 

  9. X. Han, M. Sun, X. Chai, J. Li, Y. Wu, and W. Sun, Progress in synthesis and photocatalytic activity of MAl2O4 (M = Mg, Sr, Ba) based photocatalysts. Front. Mater. 9, 845664 (2022).

    Article  Google Scholar 

  10. H.L. Song, X.F. Yu, L. Zhang, T.J. Wang, M.Q.J. Zhang, P. Liu, and X.L. Wang, Magnesium aluminate planar waveguides fabricated by C-ion implantation with different energies and fluencies. Nucl. Instrum. Methods. Phys. Res. B 362, 62 (2015).

    Article  CAS  Google Scholar 

  11. L.T. Melato, T.E. Motaung, O.M. Ntwaeaborwa, and S.V. Motloung, Effect of annealing at different time intervals on the structure, morphology and luminescent properties of MgAl2O4:0.3% In3+ nanophosphor prepared by citrate sol–gel method. Opt. Mater. 66, 319 (2017).

    Article  CAS  Google Scholar 

  12. C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa, and D.M. Jnaneshwara, White light emitting magnesium aluminate nanophosphor: near ultra violet excited photoluminescence, photometric characteristics and its UV photocatalytic activity. J. Alloys Compd 728, 1124 (2017).

    Article  CAS  Google Scholar 

  13. S.K. Mohan and R. Sarkar, A comparative study on the effect of different additives on the formation and densification of magnesium aluminate spinel. Ceram. Int. 42, 13932 (2016).

    Article  CAS  Google Scholar 

  14. G.P. Figueredo, A.F.M. Carvalho, R.L.B.A. Medeiros, F.M. Silva, H.P. Macêdo, M.A.F. Melod, and D.M.A. Meloa, Synthesis of MgAl2O4 by gelatin method: effect of temperature and time of calcination in crystalline structure. Mat. Res. 20, 254 (2017).

    Article  Google Scholar 

  15. R. Talebi, S. Khademolhoseini, and S. Rahnamaeiyan, Preparation and characterization of the magnesium aluminate nanoparticles via a green approach and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 1427 (2016).

    Article  CAS  Google Scholar 

  16. S. Dash, R.K. Sahoo, A. Das, S. Bajpai, D. Debasish, and S.K. Singh, Synthesis of MgAl2O4 spinel by thermal plasma and its synergetic structural study. J. Alloys Compd. 726, 1186 (2017).

    Article  CAS  Google Scholar 

  17. P. Fu, Y. Xu, H. Shi, B. Zhang, X. Ruan, and W. Lu, The effect of annealing process on the optical and microwave dielectric properties of transparent MgAl2O4 ceramics by spark plasma sintering. Opt. Mat. 36, 1232 (2014).

    Article  CAS  Google Scholar 

  18. D. Dwibedi, M. Avdeev, and P. Barpanda, Role of fuel on cation disorder in magnesium aluminate (MgAl2O4) spinel prepared by combustion synthesis. J. Am. Ceram. Soc. 98, 2908 (2015).

    Article  CAS  Google Scholar 

  19. T.T.N. Nguyen, and M.S. Lee, Synthesis of magnesium aluminate spinel powder from the purified sodium hydroxide leaching solution of black dross. Processes 7, 741 (2019).

    Article  CAS  Google Scholar 

  20. A. Saberi, F.G. Fard, M.W. Porada, Z. Negahdari, C. Liebscher, and B. Gossler, A novel approach to synthesis of nanosize MgAl2O4 spinel powder through sol–gel citrate technique and subsequent heat treatment. Ceram. Int. 35, 933 (2009).

    Article  CAS  Google Scholar 

  21. N. Pathak, P.S. Ghosh, S.K. Gupta, S. Mukherjee, R.M. Kadam, and A. Arya, An insight into the various defects-induced emission in MgAl2O4 and their tunability with phase behavior: combined experimental and theoretical approach. J. Phys. Chem. C 120, 4016 (2016).

    Article  CAS  Google Scholar 

  22. N. Pathak, B. Sanyal, S.K. Gupta, and R.M. Kadam, MgAl2O4 both as short and long persistent phosphor material: role of antisite defect centers in determining the decay kinetics. Solid State Sci. 88, 13 (2019).

    Article  CAS  Google Scholar 

  23. N. Pathak, P.S. Ghosh, S.K. Gupta, R.M. Kadam, and A. Arya, Defects induced changes in the electronic structures of MgO and their correlation with the optical properties: a special case of electron-hole recombination from the conduction band. RSC Adv. 6, 96398 (2016).

    Article  CAS  Google Scholar 

  24. N. Pathak, S.K. Gupta, C.L. Prajapat, S.K. Sharma, P.S. Ghosh, B. Kanrar, P.K. Pujariae, and R.M. Kadamae, Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states. Phys. Chem. Chem. Phys. 19, 11975 (2017).

    Article  CAS  Google Scholar 

  25. B. Goswami, N. Rani, R. Vats, C. Bhukkal, and R. Ahlawat, Highly crystalline and narrow bandgap MgAl2O4: synthesis and characterization. AIP Conf. Proc. 2352, 020045 (2021).

    Article  CAS  Google Scholar 

  26. H.B. Bafrooein, and T. Ebadzadeh, MgAl2O4 nanopowder synthesis by microwave assisted high energy ball- milling. Ceram. Int. 39, 8933 (2013).

    Article  Google Scholar 

  27. Z. Mosayebi, M. Rezaei, N. Hadian, F.Z. Kordshuli, and F. Meshkani, Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: effect of preparation conditions. Mat Res. Bull. 47, 2154 (2012).

    Article  CAS  Google Scholar 

  28. S. Tripathy and D. Bhattacharya, Rapid synthesis and characterization of mesoporous nanocrystalline MgAl2O4 via flash pyrolysis route. J. Asian Ceram. Soc. 1, 328 (2013).

    Article  Google Scholar 

  29. E.M.M. Ewais, D.H.A. Besisa, A.A.M.E. Amir, S.M.E. Sheikh, and D.E. Rayan, Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J. Alloys Compd. 649, 159 (2015).

    Article  CAS  Google Scholar 

  30. F. Tavangarian and R. Emadi, Synthesis, and characterization of pure nanocrystalline magnesium aluminate spinel powder. J. Alloys Compd. 489, 600 (2010).

    Article  CAS  Google Scholar 

  31. X. Du, Y. Liu, L. Li, and W. Chen, Synthesis of MgAl2O4 spinel nanoparticles via polymer-gel and isolation-medium-assisted calcination. J. Mater. Sci. 29, 2921 (2014).

    CAS  Google Scholar 

  32. M. Han, Z. Wang, Y. Xu, R. Wu, S. Jiao, Y. Chen, and S. Feng, Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method. Mater. Chem. Phys. 215, 251 (2018).

    Article  CAS  Google Scholar 

  33. S. Wang, H. Gao, Y. Wei, Y. Li, X. Yang, L. Fange, and L. Leif, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N–O and C–O functional groups decorating spinel type magnesium aluminate. Cryst. Eng. Comm. 21, 263 (2019).

    Article  CAS  Google Scholar 

  34. Savita, M. Jain, Manju, A. K. Sinha, F. Singh, A. Vij, and A. Thakur, Modulation of radiative defects in MgAl2O4 nanocrystals probed using NMR, ESR, and PL spectroscopies, J. Appl. Phys. 129, 125111 (2021)

  35. R. Ahlawat, Influence of annealing temperature on structural and optical properties of SiO2:RE2O3 [RE = Y, Gd] powder. J. Alloys Compd. 638, 356 (2015).

    Article  CAS  Google Scholar 

  36. C. Bhukkal, M. Chauhan, and R. Ahlawat, Synthesis, structural and enhanced optoelectronic properties of Cd (OH)2/CdO nanocomposite. Physica B 582, 411973 (2020).

    Article  CAS  Google Scholar 

  37. A.V. Humbe P.B. Kharat, A.C. Nawle, and K.M. Jadhav, Nanocrystalline Ni0.70− xCuxZn0.30Fe2O4 with 0 ≤ x ≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical Investigations. J. Mater. Sci. Mater. Electron. 29, 3467 (2018).

    Article  CAS  Google Scholar 

  38. C. Bhukkal R. Vats, B. Goswami, N. Rani, and R. Ahlawat, Crystallographic and electro-optic analysis of pure and Cu/Mn-doped Cd0.6Zn0.4O ternary alloy: role of the defect states and imperfection density. Mater. Sci. Eng. B 270, 115214 (2021).

    Article  CAS  Google Scholar 

  39. R. Vats and R. Ahlawat, Impact of annealing time on structural evolution of pure and Dy3+-doped CeO2 nanopowder, rietveld refinement and optical behavior. Int. J. Nanosci. 20, 2150033 (2021).

    Article  CAS  Google Scholar 

  40. C. Bhukkal and R. Ahlawat, Cu2+–Mn2+-Co-doped CdO nanocrystallites: comprehensive research on phase, morphology and optoelectronic properties. Res. Chem. Intermed. 46, 4211 (2020).

    Article  CAS  Google Scholar 

  41. R. Ahlawat Preparation and effect of thermal treatment on Gd2O3:SiO2 nanocomposite. Mod. Phys. Lett. B 29, 1550046 (2015).

    Article  CAS  Google Scholar 

  42. B. Goswami and R. Ahlawat, Impact of annealing on optimization of various thermal, structural, and optical parameters of spinel ‘gahnite’ for device fabrication. Phys. Scr. 97, 105808 (2022).

    Article  Google Scholar 

  43. P.V.M. Kutty and S. Dasgupta, Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method. Ceram. Int. 39, 7891 (2013).

    Article  CAS  Google Scholar 

  44. B. Goswami, N. Rani, and R. Ahlawat, Characterizations of Pb2+: ZnAl2O4 spinels synthesized via citrate sol–gel technique. AIP Conf. Proc. 2142, 070021 (2019).

    Article  Google Scholar 

  45. M.Y. Nassar, I.S. Ahmed, and I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties, Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 329 (2014).

    Article  CAS  Google Scholar 

  46. I. Omkaram, and S. Buddhudu, Photoluminescence properties of MgAl2O4: Dy3+ powder phosphor. Opt. Mater. 32, 8 (2009).

    Article  CAS  Google Scholar 

  47. N.I. Radishevskaya, A.Y. Nazarova, O.V. Lvov, N.G. Kasatsky, and V.D. Kitler, Synthesis of magnesium aluminate spinel in the MgO-Al2O3- Al system using the SHS method. J. Phys. Conf. Ser. 1214, 012019 (2019).

    Article  CAS  Google Scholar 

  48. I.C. Popovici, A. Diacon, F. Moscalu, and A. Dumbrav, A comparative study of the properties of yttrium and lanthanum aluminates obtained by Pechini sol–gel process. J. Ovonic Res. 18, 259 (2022).

    Article  CAS  Google Scholar 

  49. S. Sameera, V. Vidyadharan, S. Sasidharan, and K.G. Gopchandran, Nanostructured zinc aluminate: a promising material for cool roof coating. J. Sci. Adv. Mater. Dev. 4, 524 (2019).

    Google Scholar 

  50. T. Tangcharoen, J.T. Thienprasert, and C. Kongmark, Effect of calcination temperature on structural and optical properties of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. J. Adv. Ceram 8, 1 (2019).

    Article  Google Scholar 

  51. S.S. Raj, S.K. Gupta, V. Grover, K.P. Muthe, V. Natarajan, and A.K. Tyagi, MgAl2O4 spinel: synthesis, carbon incorporation and defect-induced Luminescence. J. Mol. Struct. 1089, 81 (2015).

    Article  CAS  Google Scholar 

  52. A. Pillea, H. Spiridigliozzia, M. Amamraa, T. Billetonb, M. Zaghriouic, E. Feldbachd, A. Kanaeva, and F. Schoensteina, Morphology and luminescence of MgAl2O4 ceramics obtained via spark plasma sintering. Ceram. Int. 45, 8305 (2019).

    Article  Google Scholar 

  53. A. Roniboss, A. Subramani, R. Ramamoorth, S. Yuvaraj, M. Sundararajan, and C.S. Dash, Investigation of structural, optical and magnetic behavior of MAl2O4 (M= Zn and Co) nanoparticles via microwave combustion technique. Mater. Sci. Semicond. Process. 123, 105507 (2021).

    Article  CAS  Google Scholar 

  54. N. Rani and R. Ahlawat, Tailoring the structural and optical parameters of Eu3+: CeO2-SiO2 nanopowder via thermal treatment. SILICON 11, 2521 (2019).

    Article  CAS  Google Scholar 

  55. S. Sawai and T. Uchino, Visible photoluminescence from MgAl2O4 spinel with cation disorder and oxygen vacancy. J. Appl. Phys. 112, 103523 (2012).

    Article  Google Scholar 

  56. C.T. Mathew, Sam Solomon, and J.K. Thomas, Structural, optical and vibrational characterization of infrared—transparent nanostructured MgAl2O4 synthesized by a modified combustion technique. Mater. Today Proc. 2, 954 (2015).

    Article  Google Scholar 

  57. S. Parvarinezhad, M. Salehi, and S. Kademinia, Solid state synthesis of MgAl2O4 nanomaterials and solar light-induced photocatalytic removal of Malachite green. Int J Nano Dimens. 10, 89 (2019).

    CAS  Google Scholar 

  58. P.D. Borges, J. Cott, F.G. Pinto, J. Tronto, and L. Scolfaro, Native defects as sources of optical transitions in MgAl2O4 spinel. Mater. Res. Express 3, 076202 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The CIL at MNIT Jaipur, SAIF at Punjab University, Chandigarh, and GJUS and T, Hisar (Haryana) are gratefully acknowledged for providing characterization facilities. The authors are very much thankful to Prof. Ajmer Singh Malik, Vice-Chancellor, Ch. Devi Lal University, Sirsa-125055, India, for his constant encouragement and kind support.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Ahlawat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Yes.

Consent to Participate

Yes.

Consent for Publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlawat, R., Goswami, B., Rani, N. et al. Morphological and Photophysical Tempering in Spinel MgAl2O4 Synthesized by a Novel Citrate Route Via a Suitable Annealing Scheme. J. Electron. Mater. 52, 1908–1926 (2023). https://doi.org/10.1007/s11664-022-10131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10131-w

Keywords

Navigation