Skip to main content
Log in

All-Optical Tunable Slow Light Based on Metal/Semiconductor Hybrid EIT Metamaterial

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a hybrid metamaterial whose unit cell is consisted of a silicon ring and a silver T-shaped antenna. We use finite-difference time-domain to simulate the electromagnetically-induced transparency (EIT)-like effect and slow-light performance of the metamaterial. Then, we also study the influence of different parameters, and finally achieve a group refractive index of 2253 slow-light effect based on an EIT-like effect. Moreover, we use two-dimensional material WS2 to tune the slow-light effect. This tuning method brings forward a research idea for the slow-light tuning of active metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X.X. Lu, X.Y. Hu, K.B. Shi, Q. Hu, R. Zhu, H. Yang, and Q.H. Gong, An Actively Ultrafast Tunable Giant Slow-Light Effect in Ultrathin Nonlinear Metasurfaces. Light Sci. Appl. 4, e302 (2015).

    Article  CAS  Google Scholar 

  2. T. Luis, B. Antoine, G. Amadeu, S. Pablo, and G.-R. Jaime, Ultra-Compact Optical Switches Using Slow Light Bimodal Silicon Waveguides. J. Lightw. Technol. 39, 3495 (2021).

    Article  Google Scholar 

  3. T. Ma, Q.P. Huang, H.C. He, Y. Hao, X.X. Lin, and Y.L. Lu, All-Dielectric Metamaterial Analogue of Electromagnetically Induced Transparency and Its Sensing Application in Terahertz Range. Opt. Express 27, 16624 (2019).

    Article  CAS  Google Scholar 

  4. B.M. Jung, J.D. Shin, and B.G. Kim, Optical True Time-Delay For Two-Dimensional X-Band Phased Array Antennas. IEEE Photon. Technol. Lett. 19, 877 (2007).

    Article  Google Scholar 

  5. S.E. Harris, J.E. Field, and A. Imamoğlu, Nonlinear Optical Processes Using Electromagnetically Induced Transparency. Phys. Rev. Lett. 64, 1107 (1990).

    Article  CAS  Google Scholar 

  6. R.W. Boyd, Material Slow Light and Structural Slow Light: Similarities and Differences for Nonlinear Optics. J. Opt. Soc. Am. B: Opt. Phys. 28, A38 (2011).

    Article  CAS  Google Scholar 

  7. M.S. Bigelow, N. Lepeshkin, and R.W. Boyd, Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature. Phys. Rev. Lett. 90, 113903 (2003).

    Article  Google Scholar 

  8. J. Sharping, Y. Okawachi, and A. Gaeta, Wide Bandwidth Slow Light Using a Raman Fiber Amplifier. Opt. Express 3, 6092–6098 (2005).

    Article  Google Scholar 

  9. R. Tripathi, G.S. Pati, M. Messall, K. Salit, and M.S. Shahriar, Experimental Constraints of Using Slow-Light in Sodium Vapor for Light-Drag Enhanced Relative Rotation Sensing. Opt. Commun. 266, 604 (2006).

    Article  CAS  Google Scholar 

  10. A.V. Yurii, M. O’Boyle, F.H. Hendrik, and J.M. Sharee, Active Control of Slow Light on a Chip with Photonic Crystal Waveguides. Nature 438, 65 (2005).

    Article  Google Scholar 

  11. J.K.S. Poon, P. Chak, J.M. Choi, and A. Yariv, Slowing Light with Fabry–Perot Resonator Arrays. J. Opt. Soc. Am. B 14, 2763–2769 (2007).

    Article  Google Scholar 

  12. J.T. Mok, I.C. Littler, B.J. Eggleton, and J.E. Benjamin, Dispersionless Slow Light Using Gap Solitons. Nat. Phys. 12, 775 (2007).

    Google Scholar 

  13. D.R. Smith, J.B. Pendry, and M.C. Wiltshire, Metamaterials and Negative Refractive Index. Science 305, 788 (2004).

    Article  CAS  Google Scholar 

  14. E.D. Palik, Handbook of Optical Constants of Solids, Vol. III (San Diego: Academic, 1998).

    Google Scholar 

  15. D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic Parameter Retrieval from Inhomogeneous Metamaterials. Phys. Rev. E 71, 036617 (2005).

    Article  CAS  Google Scholar 

  16. J.Q. Wang, J. Zhang, C.Z. Fan, K.J. Mu, E.J. Liang, and P. Ding, Electromagnetic Field Manipulation in Planar Nanorod Antennas Metamaterial for Slow Light Application. Opt. Commun. 383, 36 (2017).

    Article  CAS  Google Scholar 

  17. G.X. Wang, H. Lu, and X.M. Liu, Dispersionless Slow Light in MIM Waveguide Based on a Plasmonic Analogue of Electromagnetically Induced Transparency. Opt. Express 20, 20902 (2012).

    Article  Google Scholar 

  18. A. Brimont, J.V. Galán, J.M. Escalante, M. Javier, and S. Pablo, Group-Index Engineering in Silicon Corrugated Waveguides. Opt. Lett. 35, 2708 (2010).

    Article  CAS  Google Scholar 

  19. Z.Y. Jia, J.Y. Xiang, F.S. Wen, R.L. Yang, C.X. Hao, and Z.Y. Liu, Enhanced Photoresponse of SnSe-nanocrystals-decorated WS2 Monolayer Phototransistor. ACS Appl. Mater. Interfaces. 8, 4781–4788 (2016).

    Article  CAS  Google Scholar 

  20. P. Steinleitner, P. Merkl, P. Nagler, M. Joshua, S. Christian, K. Tobias, C. Alexey, and H. Rupert, Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Lett. 17, 1455 (2017).

    Article  CAS  Google Scholar 

  21. X. Liu, J. Hu, C.L. Yue, D.F. Nicholas, Y. Ling, Z.Q. Mao, and J. Wei, High Performance Field-Effect Transistor Based on Multilayer Tungsten Disulfide. ACS Nano 8, 10396 (2014).

    Article  CAS  Google Scholar 

  22. N. Perea-López, A.L. Elías, A. Berkdemir, and A. Castro-Beltran, Photosensor Device Based on Few-Layered WS2 Films. Adv. Funct. Mater. 23, 5511 (2013).

    Article  Google Scholar 

  23. S. Chen, F. Fan, Y.P. Miao, X.T. He, K.L. Zhang, and S.J. Chang, Ultrasensitive Terahertz Modulation by Silicon-Grown MoS2 Nanosheets. Nanoscale 8, 4713–4719 (2016).

    Article  CAS  Google Scholar 

  24. A.N. Gandi and U. Schwingenschlögl, WS2 As an Excellent High-Temperature Thermoelectric Material. Chem. Mater. 26, 6628 (2014).

    Article  CAS  Google Scholar 

  25. M. Manjappa, S.Y. Chiam, L.Q. Cong, A.A. Bettiol, W.L. Zhang, and R. Singh, Tailoring the Slow Light Behavior in Terahertz Metasurfaces. Appl. Phys. Lett. 106, 181101 (2015).

    Article  Google Scholar 

  26. F.Y. Meng, Q. Wu, D. Erni, K. Wu, and J.C. Lee, Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor. IEEE Trans. Microw. Theory Tech. 60, 3013 (2012).

    Article  Google Scholar 

  27. M.M. Chen, Z.Y. Xiao, X.J. Lu, F. Lv, and Y.J. Zhou, Simulation of Dynamically Tunable and Switchable Electromagnetically Induced Transparency Analogue based on Metal-Graphene Hybrid Metamaterial. Carbon 159, 273 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported from Innovation and practical ability training project of Xi'an Shiyou University (YCS20213211); Key Research and Development projects in Shaanxi Province (2018GY-062).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and C.J.M. designed the structure of the hybrid metamaterial and the methodology and wrote the manuscript; J.S.J., Y.B.Z., S.Q.B. and M.L. carried out the simulations; D.M.L. analyzed the simulation results; Y.X.Z., M.L. and Q.Z.L. created the data visualization. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengju Ma.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ma, C., Jin, J. et al. All-Optical Tunable Slow Light Based on Metal/Semiconductor Hybrid EIT Metamaterial. J. Electron. Mater. 52, 593–601 (2023). https://doi.org/10.1007/s11664-022-10031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10031-z

Keywords

Navigation