Skip to main content
Log in

Influence of Magnesium Content on the Structural, Optical, and Electrical Properties of Cu2(Zn1-xMgx)SnS4 Nanostructured Quaternary Thin Film Synthesized Using the Sol–Gel Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanostructured Cu2ZnSnS4 (CZTS) and Cu2(Zn1-xMgx)SnS4 quaternary alloys with varying magnesium (Mg) content were synthesized using a low-cost, environmentally friendly co-precipitation technique. The structural characteristics of Cu2(Zn1-xMgx)SnS4/Si were analyzed using x-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The XRD results showed that the CZTS film crystallized the kesterite phase, whereas the Cu2MgSnS4 film formed a stannite phase. Increases in Mg content led to an increase in the crystallinity of the deposited alloy, and to an increase in the average crystallite size from 31.65 nm to 53.73 nm. FE-SEM micrographs indicated the morphology of more densely packed nanostructures with less porosity when the Mg content was increased, resulting in the granular structure changing to a whisker-like form. Investigation into the optical properties of photoluminescence spectra revealed a decrease in the band gap of the Cu2(Zn1-xMgx)SnS4 film from 1.71 eV to 1.67 eV when the Mg content was increased from 0 wt.% to 1 wt.%. The current–voltage characteristics demonstrated that the prepared alloys exhibited ohmic behavior and the photocurrent improved from 1.69 × 10–4 to 2.86 × 10–4 A as the Mg content increased from 0 wt.% to 1 wt.% at an applied voltage of 6 V. The highest photosensitivity and photocurrent responsivity of the produced Cu2(Zn1-xMgx)SnS4 quaternary alloy were 5309% and 2319%, respectively, when the Mg content was 0.7 wt.%, providing the best content for ultraviolet light detection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Du, S. Wang, Q. Tian, Y. Zhao, X. Chang, H. Xiao, Y. Deng, S. Chen, S. Wu, and S. Liu, Defect Engineering in Earth-Abundant Cu2ZnSn(S, Se)4 Photovoltaic Materials via Ga3+ -Doping for over 12% Efficient Solar Cells. Adv. Funct. Mater. 31, 2010325 (2021).

    Article  CAS  Google Scholar 

  2. A.S. Ibraheam, Y. Al-Douri, U. Hashim, M.R. Ghezzar, A. Addou, and W.K. Ahmed, Cadmium Effect on Optical Properties of Cu2Zn1−xCdxSnS4 Quinternary Alloys Nanostructures. Sol. Energy 114, 39 (2015).

    Article  CAS  Google Scholar 

  3. Z. Liu and X. Su, A Novel Fluorescent DNA Sensor for Ultrasensitive Detection Of Helicobacter Pylori. Biosens. Bioelectron. 87, 66 (2017).

    Article  CAS  Google Scholar 

  4. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, and M. Powalla Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi – Rapid Res. Lett. 10, 583 (2016).

  5. T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi, Band Tailing and Efficiency Limitation in Kesterite Solar Cells. Appl. Phys. Lett. 103, 103506 (2013).

    Article  Google Scholar 

  6. S.K. Wallace, D.B. Mitzi, and A. Walsh, The Steady Rise of Kesterite Solar Cells. ACS Energy Lett. 2, 776 (2017).

    Article  CAS  Google Scholar 

  7. W. Bao and F.-Y. Sachuronggui, Band Offsets Engineering at CdxZn1−xS/Cu2ZnSnS4 Heterointerface. Chin. Phys. B 25, 127102 (2016). https://doi.org/10.1088/1674-1056/25/12/127102.

    Article  CAS  Google Scholar 

  8. D. Shin, B. Saparov, and D.B. Mitzi, Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials. Adv. Energy Mater. 7, 1602366 (2017).

    Article  Google Scholar 

  9. S. Lie, S.W. Leow, D.M. Bishop, M. Guc, V. Izquierdo-Roca, O. Gunawan, and L.H. Wong, Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis. ACS Appl. Mater. Interfaces 11, 25824 (2019).

    Article  CAS  Google Scholar 

  10. L. Choubrac, A. Lafond, M. Paris, C. Guillot-Deudon, and S. Jobic, The Stability Domain of the Selenide Kesterite Photovoltaic Materials and NMR Investigation of the Cu/Zn Disorder in Cu2ZnSnSe4 (CZTSe). Phys. Chem. Chem. Phys. 17, 15088 (2015).

    Article  CAS  Google Scholar 

  11. S. Lie, J.M.R. Tan, W. Li, S.W. Leow, Y.F. Tay, D.M. Bishop, O. Gunawan, and L.H. Wong, Reducing the Interfacial Defect Density of CZTSSe Solar Cells by Mn Substitution. J Mater Chem. A 6, 1540–1550 (2018). https://doi.org/10.1039/C7TA09668B.

    Article  CAS  Google Scholar 

  12. M. Souli, R. Engazou, L. Ajili, and N. Kamoun-Turki, Physical Properties Evolution of Sprayed Cu2MgSnS4 Thin Films with Growth Parameters and Vacuum Annealing. Superlattices Microstruct. 147, 106711 (2020).

    Article  CAS  Google Scholar 

  13. A. Ali, Y. Liang, S. Ahmed, B. Yang, B. Guo, and Y. Yang, Mutual Contaminants Relational Realization and Photocatalytic Treatment Using Cu2MgSnS4 Decorated BaTiO3. Appl. Mater. Today 18, 100534 (2020).

    Article  Google Scholar 

  14. M. Wei, Q. Du, R. Wang, G. Jiang, W. Liu, and C. Zhu, Synthesis of New Earth-abundant Kesterite Cu2MgSnS4 Nanoparticles by Hot-injection Method. Chem. Lett. 43, 1149 (2014).

    Article  CAS  Google Scholar 

  15. Y. Zhang, D. Jiang, Y. Sui, Y. Wu, Z. Wang, L. Yang, F. Wang, S. Lv, and B. Yao, Synthesis and Investigation Of Environmental Protection and Earth-Abundant Kesterite Cu2MgxZn1-xSn(S, Se)4 Thin Films for Solar Cells. Ceram. Int. 44, 15249 (2018).

    Article  CAS  Google Scholar 

  16. Y. Wang, Y. Yang, C. Zhu, H. Luan, R. Liu, L. Wang, C. Zhao, and X. Lv, Boosting the Electrical Properties of Cu2ZnSn(S, Se)4 Solar Cells via Low Amounts of Mg Substituting Zn. ACS Appl. Energy Mater. 3, 11177 (2020).

    Article  CAS  Google Scholar 

  17. D.M. Mena, D.V. Romero, C.L. Valenzuela, and A. Ricardo, Partial and Total Substitution of Zn by Mg in the Cu2ZnSnS4 Structure. Curr. Comput.-Aided Drug Des. 10, 578 (2020). https://doi.org/10.3390/cryst10070578.

    Article  CAS  Google Scholar 

  18. A.S. Ibraheam, Y. Al-Douri, U. Hashim, M. Ameri, A. Bouhemadou, and R. Khenata, Structural, Optical and Electrical Investigations of Cu2Zn1-xCdxSnS4/Si Quinternary Alloy Nanostructures Synthesized by Spin Coating Technique. Microsyst. Technol. 23, 2223 (2017).

    Article  CAS  Google Scholar 

  19. A. Bhattacharya, D.G. Tkachuk, A. Mar, and V.K. Michaelis, Mere Anarchy is Loosed: Structural Disorder in Cu2Zn1– xCdxSnS4. Chem. Mater. 33, 4709 (2021).

    Article  CAS  Google Scholar 

  20. M. Doumeng, L. Makhlouf, F. Berthet, O. Marsan, K. Delbé, J. Denape, and F. Chabert, A Comparative Study of the Crystallinity of Polyetheretherketone by using density, DSC, XRD, and Raman Spectroscopy Techniques. Polym. Test. 93, 106878 (2021).

    Article  CAS  Google Scholar 

  21. A.A. Khalefa, J.M. Marei, H.A. Radwan, and J.M. Rzaij, In2O3-CuO NANO-Flakes Prepared By Spray Pyrolysis for Gas Sensing Application. Dig. J. Nanomater. Biostructures 16, 197 (2021).

    Article  Google Scholar 

  22. J.M. Rzaij, A.S. Ibraheam, and A.M. Abass, Cobalt Effect on the Growth of Cadmium Oxide Nanostructure Prepared by Spray Pyrolysis Technique. Baghdad Sci. J. 18, 401 (2021).

    Google Scholar 

  23. Q.A. Abduljabbar, H.A. Radwan, J.M. Marei, and J.M. Rzaij, Spray Rate Effects on the NO2 Gas Sensor Properties of Ni-doped SnO2 Nanoflakes. Eng. Res. Express 4, 015028 (2022).

    Article  Google Scholar 

  24. G.L. Agawane, S.A. Vanalakar, A.S. Kamble, A.V. Moholkar, and J.H. Kim, Fabrication of Cu2 (Znx Mg1-x)SnS4 Thin Films by Pulsed Laser Deposition Technique for Solar Cell Applications. Mater. Sci. Semicond. Process. 76, 50 (2018).

    Article  CAS  Google Scholar 

  25. D. Sun, Y. Ding, L. Kong, Y. Zhang, X. Guo, L. Wei, L. Zhang, and L. Zhang, First-principles Study on Mg Doping in Cu2ZnSnS4. J. Inorg. Mater. 35, 1290 (2020).

    Article  Google Scholar 

  26. Y. Sui, Y. Zhang, D. Jiang, W. He, Z. Wang, F. Wang, B. Yao, and L. Yang, Investigation of Optimum Mg Doping Content and Annealing Parameters of Cu2MgxZn1−xSnS4 Thin Films for Solar Cells. Nanomaterials 9, 955 (2019).

    Article  CAS  Google Scholar 

  27. R. Chen and C. Persson, Electronic and Optical Properties of Cu2XSnS4 ( X = Be, Mg, Ca, Mn, Fe, and Ni) and the Impact of Native Defect Pairs. J. Appl. Phys. 121, 203104 (2017).

    Article  Google Scholar 

  28. K.F. Tse, S. Wang, M.H. Wong, and J. Zhu, Defects Properties and Vacancy Diffusion in Cu2MgSnS4. J. Semicond. 43, 022101 (2022).

    Article  CAS  Google Scholar 

  29. A.S. Ibraheam, J.M. Rzaij, and M.A. Fakhri, Structural, Optical and Electrical Investigations of Al:ZnO Nanostructures as UV Photodetector Synthesized by Spray Pyrolysis Technique. Mater. Res. Express 6, 055916 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal M. Rzaij.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicting financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibraheam, A.S., Rzaij, J.M. & Arshad, M.K.M. Influence of Magnesium Content on the Structural, Optical, and Electrical Properties of Cu2(Zn1-xMgx)SnS4 Nanostructured Quaternary Thin Film Synthesized Using the Sol–Gel Method. J. Electron. Mater. 52, 414–421 (2023). https://doi.org/10.1007/s11664-022-10002-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10002-4

Keywords

Navigation