Skip to main content

Advertisement

Log in

Influence of Post-Annealing on the Properties of Methylammonium Bismuth Iodide Perovskite Solar Cells Through the Hot Immersion Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the influence of post-annealing on the properties of methylammonium bismuth iodide (MBI) perovskite solar cells (PeSCs) fabricated through the hot immersion method (HIM) is reported. The post-annealing temperature varied between 100°C and 250°C. The XRD results showed that the crystallinity of the MBI film was improved, while the surface morphology showed that the flake-shaped structure was enhanced. On increasing the post-annealing temperature, an increase in the average grain size from 0.9 µm to 3 µm was observed. The increase in the grain size led to an enhancement of the optical properties with a narrower indirect bandgap at an extended absorption region towards a longer wavelength. Eventually, the performance of HIM-fabricated MBI PeSCs showed a twofold increase, i.e., from 0.14 V to 0.28 V, for open-circuit voltage, the short-circuit current density of the device increased by more than twofold, and power conversion efficiency increased up to 0.011% with a fivefold increase at 250°C. An improved morphology and enlarged grain size leads to a drastic increase in the efficiency of the devices. Our findings suggest that by using HIM, the performance of MBI solar cells can be improved by post-annealing, providing an alternative, simple method for the fabrication of Pb-free PeSCs in future work.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei, and Y. Gao, High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64%. J. Phys. Chem. Lett. 8, 4300 (2017). https://doi.org/10.1021/acs.jpclett.7b01952.

    Article  CAS  Google Scholar 

  2. S. Sanders, D. Stümmler, P. Pfeiffer, N. Ackermann, G. Simkus, M. Heuken, P.K. Baumann, A. Vescan, and H. Kalisch, Chemical Vapor Deposition of Organic-Inorganic Bismuth-Based Perovskite Films for Solar Cell Application. Sci. Rep. 9, 9774 (2019). https://doi.org/10.1038/s41598-019-46199-4.

    Article  CAS  Google Scholar 

  3. Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, and W. Huang, Lead-Free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives. Adv. Mater. 29, 1605005 (2017). https://doi.org/10.1002/adma.201605005.

    Article  CAS  Google Scholar 

  4. B. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E.M.J. Johansson, Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application. Adv. Mater. 9, 6806 (2015). https://doi.org/10.1002/adma.201501978.

    Article  CAS  Google Scholar 

  5. E. Maleki, M. Ranjbar, and S. Kahani, The effect of Antisolvent Dropping Delay Time on the Morphology and Structure of the Perovskite Layer in the Hole Transport Material Free Perovskite Solar Cells. Prog. Color Color. Coat. 14, 47 (2021). https://doi.org/10.30509/pccc.2021.81671.

    Article  CAS  Google Scholar 

  6. C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, and X. Hou, Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8V. J. Phys. Chem. Lett. 8, 394 (2017). https://doi.org/10.1021/acs.jpclett.6b02578.

    Article  CAS  Google Scholar 

  7. M. Ataei, M. Adelifard, and S.S. Hosseini, Physical Properties and Photovoltaic Performance of Perovskite Solar Cells Based on Lead-Free A3Bi2I9 (A = CH3NH3, Cs) Active Layers. J. Electron. Mater. 50, 571 (2021). https://doi.org/10.1007/s11664-020-08580-2.

    Article  CAS  Google Scholar 

  8. T. Kirchartz, J.A. Márquez, M. Stolterfoht, and T. Unold, Photoluminescence-Based Characterization of Halide Perovskites for Photovoltaics. Adv. Energy Mater. 10, 1904134 (2020). https://doi.org/10.1002/aenm.201904134.

    Article  CAS  Google Scholar 

  9. J. Shin, M. Kim, S. Jung, C.S. Kim, J. Park, A. Song, K.B. Chung, S.H. Jin, J.H. Lee, and M. Song, Enhanced Efficiency in Lead-Free Bismuth Iodide with Post Treatment Based on a Hole-Conductor-Free Perovskite Solar Cell. Nano Res. 11, 283 (2018). https://doi.org/10.1007/s12274-018-2151-4.

    Article  CAS  Google Scholar 

  10. M. Lyu, J. Yun, M. Cai, Y. Jiao, P.V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, and L. Wang, Organic – Inorganic Bismuth (III)-Based Material: A Lead- Free, Air-Stable and Solution-Processable Light-Absorber Beyond Organolead Perovskites. Nano Res. 9, 692 (2016). https://doi.org/10.1007/s12274-015-0948-y.

    Article  CAS  Google Scholar 

  11. T. Okano and Y. Suzuki, Gas-Assisted Coating of Bi-Based (CH3NH3)3Bi2I9 Active Layer in Perovskite Solar Cells. Mater. Lett. 191, 77 (2017). https://doi.org/10.1016/j.matlet.2017.01.047.

    Article  CAS  Google Scholar 

  12. R. Nie, A. Mehta, B.W. Park, H.W. Kwon, J. Im, and S. Il Seok, Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells. J. Am. Chem. Soc. 140, 872 (2018). https://doi.org/10.1021/jacs.7b11332.

    Article  CAS  Google Scholar 

  13. Z. Xiao, Z. Song, and Y. Yan, From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Adv. Mater. 31, 1 (2019). https://doi.org/10.1002/adma.201803792.

    Article  CAS  Google Scholar 

  14. K. Eckhardt, N. Pérez, B. Rasche, A. Zeugner, J. Grothe, T. Doert, K. Nielsch, and S. Kaskel, A Photosensor Based on Lead-Free Perovskite-Like Methyl-Ammonium Bismuth Iodide. Sens Actuators A Phys. 291, 75 (2019). https://doi.org/10.1016/j.sna.2019.03.031.

    Article  CAS  Google Scholar 

  15. F. Giustino and H.J. Snaith, Toward Lead-Free Perovskite Solar Cells. ACS Energy Lett. 1, 1233 (2016). https://doi.org/10.1021/acsenergylett.6b00499.

    Article  CAS  Google Scholar 

  16. R.L.Z. Hoye, R.E. Brandt, A. Osherov, V. Stevanovic, S.D. Stranks, M.W.B. Wilson, H. Kim, A.J. Akey, J.D. Perkins, R.C. Kurchin, J.R. Poindexter, E.N. Wang, M.G. Bawendi, and V. Bulovic, Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic – Inorganic Solar Absorber. A Chem. Eur. J. Commun. 80401, 2605 (2016). https://doi.org/10.1002/chem.201505055.

    Article  CAS  Google Scholar 

  17. J.-Y. Xi, R. Jia, W. Li, J. Wang, F.-Q. Bai, R.I. Eglitis, and H.-X. Zhang, How Does Graphene Enhance the Photoelectric Conversion Efficiency of Dye Sensitized Solar Cells? An Insight From a Theoretical Perspective. J. Mater. Chem. A 7, 2730 (2019). https://doi.org/10.1039/c8ta06872k.

    Article  CAS  Google Scholar 

  18. J. Chen, T. Shi, X. Li, B. Zhou, H. Cao, and Y. Wang, Origin of the High Performance of Perovskite Solar Cells with Large Grains. Appl. Phys. Lett. 108, 053302 (2016). https://doi.org/10.1063/1.4941238.

    Article  CAS  Google Scholar 

  19. W. Nie, H. Tsai, R. Asadpour, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, and H.-L. Wang, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015). https://doi.org/10.1126/science.aaa0472.

    Article  CAS  Google Scholar 

  20. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater. 26, 6503 (2014). https://doi.org/10.1002/adma.201401685.

    Article  CAS  Google Scholar 

  21. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747.

    Article  CAS  Google Scholar 

  22. W. Luo, C. Wu, W. Sun, X. Guo, L. Xiao, and Z. Chen, High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process. ACS Appl. Mater. Interfaces 9, 26915 (2017). https://doi.org/10.1021/acsami.7b07775.

    Article  CAS  Google Scholar 

  23. O. Shargaieva, F. Lang, J. Rappich, T. Dittrich, M. Klaus, M. Meixner, C. Genzel, and N.H. Nickel, The Influence of the Grain Size on the Properties of CH3NH3PbI Thin Films. ACS Appl. Mater. Interfaces 9, 38428 (2017). https://doi.org/10.1021/acsami.7b10056.

    Article  CAS  Google Scholar 

  24. S.M. Jain, D. Phuyal, M.L. Davies, M. Li, B. Philippe, C. De Castro, Z. Qiu, J. Kim, T. Watson, W.C. Tsoi, O. Karis, H. Rensmo, G. Boschloo, T. Edvinsson, and J.R. Durrant, An Effective Approach of Vapour Assisted Morphological Tailoring for Reducing Metal Defect Sites in Lead-Free, (CH3NH3)3Bi2I9 Bismuth-Based Perovskite Solar Cells for Improved Performance and Long-Term Stability. Nano Energy 49, 614 (2018). https://doi.org/10.1016/j.nanoen.2018.05.003.

    Article  CAS  Google Scholar 

  25. M. Kim, G. Kim, K.S. Oh, Y. Jo, H. Yoon, and K. Kim, Supporting information A High Temperature-Short Time Annealing Process for High Performance Large-Area Perovskite Solar Cells. ACS Nano 11, 6057 (2017). https://doi.org/10.1021/acsnano.7b02015.

    Article  CAS  Google Scholar 

  26. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater. 24, 151 (2014). https://doi.org/10.1002/adfm.201302090.

    Article  CAS  Google Scholar 

  27. M.F. Achoi, S. Aiba, S. Kato, N. Kishi, and T. Soga, A Novel Approach Towards Compact and Improved-Crystallinity Methylammonium Bismuth Iodide Film via Hot Immersion Method. Mater. Lett. X 16, 100096 (2021). https://doi.org/10.1016/j.mlblux.2021.100096.

    Article  CAS  Google Scholar 

  28. M.F. Achoi, S. Aiba, S. Kato, N. Kishi, and T. Soga, Fabrication and Properties of Compact (CH3NH3)3Bi2I9 Perovskite Solar Cell by the Hot Immersion Method. Opt. Mater. X 15, 100158 (2022). https://doi.org/10.1016/j.omx.2022.100158.

    Article  CAS  Google Scholar 

  29. M.F. Achoi, M.A.A. Noman, S. Kato, N. Kishi, and T. Soga, Synthesis of Bismuth Triiodide Nanofibers by Spin-Coating at Room Temperature. Materialia 16, 101077 (2021). https://doi.org/10.1016/j.mtla.2021.101077.

    Article  CAS  Google Scholar 

  30. M.F. Achoi, S. Aiba, S. Kato, N. Kishi, and T. Soga, Effect of Methylammonium Iodide on the All-Solution Prepared Methylammonium Bismuth Iodide Perovskite Solar Cells Performance. ASM Sci J 17, 1 (2022). https://doi.org/10.32802/asmscj.

    Article  Google Scholar 

  31. S. Sanders, D. Stümmler, P. Pfeiffer, N. Ackermann, G. Simkus, M. Heuken, P.K. Baumann, A. Vescan, and H. Kalisch, Morphology Control of Organic-Inorganic Bismuth-Based Perovskites for Solar Cell Application. Phys. status solidi 215, 1800409 (2018). https://doi.org/10.1002/pssa.201800409.

    Article  CAS  Google Scholar 

  32. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 7, 2619 (2014). https://doi.org/10.1039/c4ee01138d.

    Article  CAS  Google Scholar 

  33. Y. Shirahata, “Effects of Annealing Temperature on Photovoltaic Properties of Lead-Free (CH3NH3)3Bi2I9 Solar Cells. J. Ceram. Soc. Japan 128, 298 (2020). https://doi.org/10.2109/jcersj2.19156.

    Article  CAS  Google Scholar 

  34. M. Abulikemu, O.-C. Sam, X. Miao, E. Alarousu, B. Murali, N. Ngongang, O. Guy, J. Barbé, A.E. Labban, A. Amassian, and S. Del Gobbo, Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH3NH3)3Bi2I9. J Mater Chem A 4, 12504 (2016).

    Article  CAS  Google Scholar 

  35. H. Li, C. Wu, Y. Yan, B. Chi, J. Pu, J. Li, and S. Priya, Fabrication of Lead-Free (CH3NH3)3Bi2I9 Perovskite Photovoltaics in Ethanol Solvent. Chemsuschem 10, 3994 (2017). https://doi.org/10.1002/cssc.201701470.

    Article  CAS  Google Scholar 

  36. S. Öz, J.-C. Hebig, E. Jung, T. Singh, A. Lepcha, S. Olthof, J. Flohre, Y. Gao, R. German, P.H.M.V. Loosdrecht, K. Meerholz, T. Kirchartz, and S. Mathur, Zero-Dimensional (CH3NH3)3Bi2I9 Perovskite for Optoelectronic Applications. Sol. Energy Mater. Sol. Cells 158, 195 (2016). https://doi.org/10.1016/j.solmat.2016.01.035.

    Article  CAS  Google Scholar 

  37. T. Singh, A. Kulkarni, M. Ikegami, and T. Miyasaka, Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3Bi2I9 for Photovoltaic Applications. ACS Appl. Mater. Interfaces 8, 14547 (2016). https://doi.org/10.1021/acsami.6b02843.

    Article  CAS  Google Scholar 

  38. J. Ye, H. Zheng, L. Zhu, X. Zhang, L. Jiang, W. Chen, G. Liu, X. Pan, and S. Dai, High-Temperature Shaping Perovskite Film Crystallization for Solar Cell Fast Preparation. Sol. Energy Mater. Sol. Cells 160, 60 (2017). https://doi.org/10.1016/j.solmat.2016.10.022.

    Article  CAS  Google Scholar 

  39. A.A. Abuelwafa, R.M.D. Matiur, A.A. Putri, and T. Soga, Synthesis, Structure, and Optical Properties of the Nanocrystalline Bismuth Oxyiodide (BiOI) for Optoelectronic Application. Opt. Mater. 109, 110413 (2020). https://doi.org/10.1016/j.optmat.2020.110413.

    Article  CAS  Google Scholar 

  40. J.L.H. Clabel, I.T. Awan, V.A.G. Rivera, I.C. Nogueira, M. Pereira da Silva, M. Siu Li, S.O. Ferreira, and E. Marega Jr, Growth Process and Grain Boundary Defects in Er Doped BaTiO3 Processed by EB-PVD: A Study by XRD, FTIR SEM and AFM. App. Surf. Sci. 493, 982 (2019). https://doi.org/10.1016/j.apsusc.2019.07.003.

    Article  CAS  Google Scholar 

  41. J.L. Clabel, S.N. Nazrin, G. Lozano, M. Pereira da Silva, M. Siu Li, and E. Marega Jr., Activation Energy and its Fulctuations at Grain Boundaries of Er3+: BaTiO3 Perosvkite Thin Films: Effect of Doping Concentration and Annealing Temperature. Vacuum 194, 110562 (2021). https://doi.org/10.1016/j.vacuum.2021.110562.

    Article  CAS  Google Scholar 

  42. R.M.D. Matiur, A.A. Abuelwafa, A.A. Putri, S. Kato, N. Kishi, and T. Soga, Annealing Effects on Structural and Photovoltaic Properties of the Dip-Silar-Prepared Bismuth Oxyhalides (BiOI, Bi7O9I3, Bi5O7I) Films. SN Appl. Sci. 3, 1 (2021). https://doi.org/10.1007/s42452-021-04153-y.

    Article  CAS  Google Scholar 

  43. H. Wang, J. Tian, K. Jiang, Y. Zhang, H. Fan, J. Huang, L.M. Yang, B. Guan, and Y. Song, Fabrication of Methylammonium Bismuth Iodide Through Interdiffusion of Solution-Processed BiI3/CH3NH3I Stacking Layers. RSC Adv. 7, 43826 (2017). https://doi.org/10.1039/c7ra07123j.

    Article  CAS  Google Scholar 

  44. C.V. Thompson, Secondary Grain Growth in Thin Films of Semiconductors: Theoretical Aspects. J. Appl. Phys. 58, 763 (1985). https://doi.org/10.1063/1.336194.

    Article  CAS  Google Scholar 

  45. J.E. Burke, and D. Turnbull, Recrystallization and Grain Growth. Prog. Met. Phys. 3, 220 (1952). https://doi.org/10.1016/0502-8205(52)90009-9.

    Article  CAS  Google Scholar 

  46. W. Luo, C. Wu, W. Sun, X. Guo, L. Xiao, and Z. Chen, High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process. Appl. Mater. Inter. 9, 26915 (2017). https://doi.org/10.1021/acsami.7b07775.

    Article  CAS  Google Scholar 

  47. X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan, and S. Frank Liu, Modulating Crystal Grain Size and Optoelectronic Properties of Perovskite Films for Solar Cells by Reaction Temperature. Nanoscale 8, 3816 (2016). https://doi.org/10.1039/c5nr08935b.

    Article  CAS  Google Scholar 

  48. A. Popoola, M.A. Gondal, L.E. Oloore, and I.K. Popoola, Laser-Induced Optoelectronic and Crystallographic Tuning of Methyl Ammonium Iodobismuthate Perovskite for Improved Performance of Sandwich-Type Photodetectors. Appl. Elect. Mater. 2, 1145 (2020). https://doi.org/10.1021/acsaelm.0c00116.

    Article  CAS  Google Scholar 

  49. B.-M. Bresolin, S.B. Hammouda, and M. Sillanpaa, Methylammonium Iodo Bismuthate Perovskite (CH3NH3)3Bi2I9 As New Effective Visible Light-Responsive Photocatalyst for Degradation of Environment Pollutants. J. Photochem. Photobio. A: Chem. 376, 116 (2019). https://doi.org/10.1016/j.jphotochem.2019.03.009.

    Article  CAS  Google Scholar 

  50. T. Mohammad, V. Kumar, and V. Dutta, Electric Field Assisted Spray Coated Lead Free Bismuth Iodide Perovskite Thin Film for Solar Cell Application. Sol. Energy 182, 72 (2019). https://doi.org/10.1016/j.solener.2019.02.034.

    Article  CAS  Google Scholar 

  51. R.M.D. Matiur, M.A.A. Noman, S. Kato, and T. Soga, A Novel Modest Synthesis of Device Applicable Flakes Based Stable BiOI Film by the Oxidation of BiI3 Film. J Alloys Comp Sol 873, 159715 (2021). https://doi.org/10.1016/j.jallcom.2021.159715.

    Article  CAS  Google Scholar 

  52. R. Wang, X. Zhang, J. He, C. Ma, L. Xu, P. Sheng, and F. Huang, Bi3+-Doped CH3NH3PbI3: Red-Shifting Absorption Edge and Longer Charge Carrier Lifetime. J. Alloys Compd. 695, 555 (2017). https://doi.org/10.1016/j.jallcom.2016.11.125.

    Article  CAS  Google Scholar 

  53. C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, and G. Cao, Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film. Adv. Energy Mater. 7, 1 (2017). https://doi.org/10.1002/aenm.201602017.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the Japanese government (MEXT) for the sponsorship throughout this study and acknowledge the Universiti Teknologi MARA (UiTM) for support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MFA: Conducted experimental work, data collecting, and analysis, wrote the original draft, and performed review and editing. SA: Guidance on characterization. SK and NK: Contribution of ideas and instrumental assistance. TS: Performed supervision, conceptualization, formal analysis, and editing, and wrote the review and provided film deposition concept.

Corresponding authors

Correspondence to M. F. Achoi or T. Soga.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achoi, M.F., Aiba, S., Kato, S. et al. Influence of Post-Annealing on the Properties of Methylammonium Bismuth Iodide Perovskite Solar Cells Through the Hot Immersion Method. J. Electron. Mater. 52, 351–367 (2023). https://doi.org/10.1007/s11664-022-09994-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09994-w

Keywords

Navigation