Skip to main content

Advertisement

Log in

Ambient Prepared Mesoporous Perovskite Solar Cells with Longer Stability

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The study carried out here is the ambient preparation of CH3NH3PbI3 (methylammonium lead iodide, MAPI)-based perovskite solar cells (PSCs) without a hole transport layer (HTL). The TiO2 electron transport layer (ETL) is deposited using three different methods, namely, chemical deposition, RF sputtering and e-beam evaporation, and the fabricated solar cell performances are compared. The common device structure is FTO/compact-TiO2/mesoporous-TiO2/MAPI/Au. The solar cell parameters are measured under standard AM 1.5 G light of intensity 1 sun. The e-beam-based PSCs attained a maximum power conversion efficiency of 3.54% among the 25 devices fabricated on a 1-in.2 substrate. Notably, it is found that 85% or above of the initial efficiency is retained for 20 days of storage in the dark indicating slow degradation of the studied solar cells. All the solar cell performances are monitored for 130 days during the storage. Remarkably, the RF-sputtered compact TiO2 layer-based PSCs have retained 99% of the initial average efficiency up to 112 days of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue, and Y. Yang, Adv. Funct. Mater. 29, 1808843 (2019).

    Article  CAS  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    CAS  Google Scholar 

  3. Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, and J. You, Adv. Mater. 29, 1703852 (2017).

    Article  Google Scholar 

  4. H.S. Jung and N.G. Park, Small 11, 10 (2014).

    Article  Google Scholar 

  5. Y.C. Hsiao, T. Wu, M. Li, Q. Liu, W. Qin, and B. Hu, J. Mater. Chem. A 3, 15372 (2015).

    Article  CAS  Google Scholar 

  6. S.D. Stranks and H.J. Snaith, Nat. Nanotechnol. 10, 391 (2015).

    Article  CAS  Google Scholar 

  7. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).

    Article  CAS  Google Scholar 

  8. S. Gholipour and M. Saliba, Small 14, 1802385 (2018).

    Article  Google Scholar 

  9. M. Afzaal, H.M. Yates, A. Walter, and S. Nicolay, IEEE J. Photovolt. 9, 1302 (2019).

    Article  Google Scholar 

  10. Y. Li, S. Ye, W. Sun, W. Yan, Z. Yu Li, Z. Bian, S.Wang Liu, and C. Huang, J. Mater. Chem. A 3, 18389 (2015).

    Article  CAS  Google Scholar 

  11. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, MdK Nazeeruddin, and M. Gratzel, J. Am. Chem. Soc. 134, 17396 (2012).

    Article  CAS  Google Scholar 

  12. K.-W. Tsai, C.C. Chueh, S.T. Williams, T.C. Wen, and A.K.Y. Jen, J. Mater. Chem. A 3, 9128 (2015).

    Article  CAS  Google Scholar 

  13. P. Kung, M. Li, P. Lin, Y. Chiang, C. Chan, T. Guo, and P. Chen, Adv. Mater. Interfaces 5, 1800882 (2018).

    Article  Google Scholar 

  14. D. Zhou, T. Zhou, Y. Tian, X. Zhu, and Y. Tu, J. Nanomater. 2018, 8148072 (2018).

    Article  Google Scholar 

  15. S.R. Raga, M.C. Jung, M.V. Lee, M.R. Leyden, Y. Kato, and Y. Qi, Chem. Mater. 27, 1597 (2015).

    Article  CAS  Google Scholar 

  16. W. Li, J. Fan, Y. Mai, and L. Wang, Adv. Energy Mater. 7, 1601433 (2017).

    Article  Google Scholar 

  17. B.A. de Carvalho, S. Kavadiya, S. Huang, D.M. Niedzwiedzki, and P. Biswas, IEEE J. Photovolt. 7, 532 (2017).

    Article  Google Scholar 

  18. C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao, and B. Xu, J. Phys. Chem. C 121, 6546 (2017).

    Article  CAS  Google Scholar 

  19. J. Wu, J.J. Dong, S.X. Chen, H.Y. Hao, J. Xing, and H. Liu, Nanoscale Res. Lett. 13, 293 (2018).

    Article  Google Scholar 

  20. E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin, T. Yang, J.H. Noh, and J. Seo, Nature 567, 511 (2019).

    Article  CAS  Google Scholar 

  21. Y. Li, Z. Zhang, Y. Zhou, L. Xie, N. Gao, X. Lu, X. Gao, J. Gao, L. Shui, S. Wu, and J. Liu, Appl. Surf. Sci. 513, 145790 (2020).

    Article  CAS  Google Scholar 

  22. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, and J. You, Nat. Photonics 13, 460 (2019).

    Article  CAS  Google Scholar 

  23. C.C. Boyd, R. Cheacharoen, T. Leijtens, and M.D. McGehee, Chem. Rev. 119, 3418 (2018).

    Article  Google Scholar 

  24. B. Lei, V.O. Eze, and T. Mori, Jpn. J. Appl. Phys. 54, 100305 (2015).

    Article  Google Scholar 

  25. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, ACS Nano 8, 1674 (2014).

    Article  CAS  Google Scholar 

  26. C.M. Wolff, P. Caprioglio, M. Stolterfoht, and D. Neher, Adv. Mater. 31, 1902762 (2019).

    Article  CAS  Google Scholar 

  27. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S. Seok, Nat. Mater. 13, 897 (2014).

    Article  CAS  Google Scholar 

  28. J.W. Lee, S.H. Lee, H.S. Ko, J. Kwon, J.H. Park, S.M. Kang, N. Ahn, M. Choi, J.K. Kim, and N.G. Park, J. Mater. Chem. A 3, 9179 (2014).

    Article  Google Scholar 

  29. M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, X. Xu, J. Ding, and N. Yuan, RSC Adv. 5, 93957 (2015).

    Article  CAS  Google Scholar 

  30. P. Singh, R. Mukherjee, S. Avasthi, and A.C.S. Appl, Mater. Interfaces 12, 13982 (2020).

    Article  CAS  Google Scholar 

  31. P. Vivo, A. Ojanperä, J.H. Smått, S. Sandén, S.G. Hashmi, K. Kaunisto, P. Ihalainen, M.T. Masood, R. Österbacka, P.D. Lund, and H. Lemmetyinen, Org. Electron. 41, 287 (2017).

    Article  CAS  Google Scholar 

  32. S.S. Mali, C.K. Hong, A.I. Inamdar, H. Im, and S.E. Shim, Nanoscale 9, N3095 (2017).

    Article  Google Scholar 

  33. W. Qiu, U.W. Paetzold, R. Gehlhaar, V. Smirnov, H.G. Boyen, J.G. Tait, B. Conings, W. Zhang, C.B. Nielsen, I. McCulloch, and L. Froyen, J. Mater. Chem. 3, 22824 (2015).

    Article  CAS  Google Scholar 

  34. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, and M. Gratzel, Nat. Commun. 5, 3834 (2014).

    Article  CAS  Google Scholar 

  35. X.H. Zhang, J.J. Ye, L.Z. Zhu, H.Y. Zheng, X.P. Liu, X. Pan, S.Y. Dai, and A.C.S. Appl, Mater. Interfaces 8, 35440 (2016).

    Article  CAS  Google Scholar 

  36. Y. Fu, F. Meng, M.B. Rowley, B.J. Thompson, M.J. Shearer, D. Ma, R.J. Hamers, J.C. Wright, and S. Jin, J. Am. Chem. Soc. 137, 5810 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. G. U. Kulkarni for the support and encouragement to this work. S.A. thanks DST-Nanomission for the funding under the thematic project in frontiers of Nano Science and Technology (SR/NM/TP-25/2016). A.M. thanks CeNS for SRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angappane Subramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 683 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makkaramkott, A., Mukherjee, R., Avasthi, S. et al. Ambient Prepared Mesoporous Perovskite Solar Cells with Longer Stability. J. Electron. Mater. 50, 1535–1543 (2021). https://doi.org/10.1007/s11664-020-08721-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08721-7

Keywords

Navigation