Skip to main content
Log in

Dispersed Zn Nucleation and Growth Induced by Functional Nano-TiO2 Particles for a Stable Zn Metal Anode

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Aqueous zinc (Zn) ion batteries have gained great attention for their high safety and low cost, but the poor stability of the Zn anode seriously hinders their rapid development. Herein, nano-size titanium dioxide (nano-TiO2) particles prepared by a one-step hydrothermal method are utilized as a functional electrolyte additive for better induction of the dispersed Zn nucleation, preventing dendrite formation and enhancing anti-corrosion behavior of Zn metal anode. In particular, massive Zn ions and transferred free water can be attracted by these nano-TiO2 particles and then uniformly distributed on the electrode surface, effectively avoiding the concentrated ion distribution and relieving the interfacial corrosion. Because of these intrinsic merits, conducted electrochemical performance has also been greatly improved in the electrolyte loading functional nano-TiO2 additive. When working at 5 mA cm−2 and 3 mAh cm−2, the Zn-based symmetric cell achieves a stable cycling lifetime over 300 h, three times longer than the cell in the electrolyte without functional nano-TiO2 additive. Moreover, an asymmetric cell with Cu electrode not only maintains a high coulombic efficiency of 99.74% over 400 cycles, but also delivers a stable Zn plating/stripping performance. The modification strategy and application of aqueous electrolyte provide a constructive guidance for the development of safe Zn metal anode.

Graphical Abstract

Functional nano-TiO2 particles were applied as the electrolyte additive to promote uniform Zn deposition and enhance the stability of Zn metal anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.J. Davidson, Exnovating for a Renewable Energy Transition. Nat. Energy 4, 254 (2019).

    Article  Google Scholar 

  2. G.Z. Fang, J. Zhou, A.Q. Pan, and S.Q. Liang, Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Lett. 3, 2480 (2018).

    Article  CAS  Google Scholar 

  3. L.T. Hu, P. Xiao, L.L. Xue, H.Q. Li, and T.Y. Zhai, The Rising Zinc Anodes for High-energy Aqueous Batteries. EnergyChem 3, 100052 (2021).

    Article  CAS  Google Scholar 

  4. L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding, C.S. Wang, and K. Xu, Realizing High Zinc Reversibility in Rechargeable Batteries. Nat. Energy 5, 743 (2020).

    Article  CAS  Google Scholar 

  5. D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li, M. Jaroniec, and S.Z. Qiao, Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications. Sci. Adv. 6, eaba4098 (2020).

    Article  CAS  Google Scholar 

  6. H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan, B. Fei, and F. Pan, Recent Advances in Zinc Anodes for High-performance Aqueous Zn-ion Batteries. Nano Energy 70, 104523 (2020).

    Article  CAS  Google Scholar 

  7. H.F. Li, L.T. Ma, C.P. Han, Z.F. Wang, Z.X. Liu, Z.J. Tang, and C.Y. Zhi, Advanced Rechargeable Zinc-based Batteries: Recent Progress and Future Perspectives. Nano Energy 62, 550 (2019).

    Article  Google Scholar 

  8. W.J. Lu, C.K. Zhang, H.M. Zhang, and X.F. Li, Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects. ACS Energy Lett. 6, 2765 (2021).

    Article  CAS  Google Scholar 

  9. Q. Li, Y.W. Zhao, F.N. Mo, D.H. Wang, Q. Yang, Z.D. Huang, G.J. Liang, A. Chen, and C.Y. Zhi, Dendrites Issues and Advances in Zn Anode for Aqueous Rechargeable Zn-based Batteries. EcoMat. 2, e12035 (2020).

    Article  CAS  Google Scholar 

  10. J.W. Wang, Y. Yang, Y.X. Zhang, Y.M. Li, R. Sun, Z.C. Wang, and H. Wang, Strategies Towards the Challenges of Zinc Metal Anode in Rechargeable Aqueous Zinc Ion Batteries. Energy Storage Mater. 35, 19 (2021).

    Article  CAS  Google Scholar 

  11. Q. Zhang, J.Y. Luan, Y.G. Tang, X.B. Ji, and H.Y. Wang, Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 59, 13180 (2020).

    Article  CAS  Google Scholar 

  12. C.W. Li, L.T. Wang, J.C. Zhang, D.J. Zhang, J.M. Du, Y.G. Yao, and G. Hong, Roadmap on the Protective Strategies of Zinc Anodes in Aqueous Electrolyte. Energy Storage Mater. 44, 104 (2022).

    Article  Google Scholar 

  13. W.C. Du, E.H. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, and C.C. Li, Challenges in the Material and Structural Design of Zinc Anode towards High-performance Aqueous Zinc-ion Batteries. Energy Environ. Sci. 13, 3330 (2020).

    Article  CAS  Google Scholar 

  14. B. Li, X.T. Zhang, T.T. Wang, Z.X. He, B.G. Lu, S.Q. Liang, and J. Zhou, Interfacial Engineering Strategy for High-Performance Zn Metal Anodes. Nano-Micro Lett. 14, 6 (2022).

    Article  Google Scholar 

  15. S. Guo, L.P. Qin, T.S. Zhang, M. Zhou, J. Zhou, G.Z. Fang, and S.Q. Liang, Fundamentals and Perspectives of Electrolyte Additives for Aqueous Zinc-ion Batteries. Energy Storage Mater. 34, 545 (2021).

    Article  Google Scholar 

  16. X.J. Chen, W. Li, S.S. Hu, N.G. Akhmedov, D. Reed, X.L. Li, and X.B. Liu, Polyvinyl Alcohol Coating Induced Preferred Crystallographic Orientation in Aqueous Zinc Battery Anodes. Nano Energy 98, 107269 (2022).

    Article  CAS  Google Scholar 

  17. T.C. Liu, J. Hong, J.L. Wang, Y. Xu, and Y. Wang, Uniform Distribution of Zinc Ions Achieved by Functional Supramolecules for Stable Zinc Metal Anode with Long Cycling Lifespan. Energy Storage Mater. 45, 1074 (2022).

    Article  Google Scholar 

  18. Q.L. Zhang, L.Y. Deng, M.C. Li, X.F. Wang, R. Li, Z.Y. Liu, C.K. Yang, X.H. Wang, W. Liu, and Y. Yu, Regulation of Zinc Interface by Maltitol for Long-Life Dendrite-free Aqueous Zinc Ion Batteries. J. Electron. Mater. 51, 4763 (2022).

    Article  CAS  Google Scholar 

  19. P. Sun, L. Ma, W.H. Zhou, M.J. Qiu, Z.L. Wang, D.L. Chao, and W.J. Mai, Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive. Angew. Chem. Int. Ed. 60, 18247 (2021).

    Article  CAS  Google Scholar 

  20. D.D. Feng, F.Q. Cao, L. Hou, T.Y. Li, Y.C. Jiao, and P.Y. Wu, Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small 17, 2103195 (2021).

    Article  CAS  Google Scholar 

  21. H.T. Lu, X.L. Zhang, M.H. Luo, K.S. Cao, Y.H. Lu, B.B. Xu, H.G. Pan, K. Tao, and Y.Z. Jiang, Amino Acid-Induced Interface Charge Engineering Enables Highly Reversible Zn Anode. Adv. Funct. Mater. 31, 2103514 (2021).

    Article  CAS  Google Scholar 

  22. D.L. Han, Z.X. Wang, H.T. Lu, H. Li, C.J. Cui, Z.C. Zhang, R. Sun, C.N. Geng, Q.H. Liang, X.X. Guo, Y.B. Mo, X. Zhi, F.Y. Kang, Z. Weng, and Q.H. Yang, A Self-Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Adv. Energy Mater. 12, 2102982 (2022).

    Article  CAS  Google Scholar 

  23. X.X. Guo, Z.Y. Zhang, J.W. Li, N.J. Luo, G.L. Chai, T.S. Miller, F.L. Lai, P. Shearing, D.J.L. Brett, D.L. Han, Z. Weng, G.J. He, and I.P. Parkin, Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Lett. 6, 395 (2021).

    Article  CAS  Google Scholar 

  24. Y. Liu, J.P. Hu, Q.Q. Lu, M. Hantusch, H. Zhang, Z. Qua, H.M. Tang, H.Y. Dong, O.G. Schmidt, R. Holze, and M.S. Zhu, Highly Enhanced Reversibility of a Zn Anode by In-situ Texturing. Energy Storage Mater. 47, 98 (2022).

    Article  Google Scholar 

  25. Y.J. Zhang, Z.Y. Huang, K. Wu, F.F. Yu, M. Zhu, G.Y. Wang, G. Xu, M.H. Wu, H.K. Liu, S.X. Dou, and C. Wu, 2D Anionic Nanosheet Additive for Stable Zn Metal Anodes in Aqueous Electrolyte. Chem. Eng. J. 430, 133042 (2022).

    Article  CAS  Google Scholar 

  26. J. Abdulla, J. Cao, D.D. Zhang, X.Y. Zhang, C. Sriprachuabwong, S. Kheawhom, P. Wangyao, and J.Q. Qin, Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries. ACS Appl. Energy Mater. 4, 4602 (2021).

    Article  CAS  Google Scholar 

  27. H. Zhang, R.T. Guo, S. Li, C. Liu, H.Y. Li, G.Q. Zou, J.G. Hu, H.S. Hou, and X.B. Ji, Graphene Quantum Dots Enable Dendrite-free Zinc Ion Battery. Nano Energy 92, 106752 (2022).

    Article  CAS  Google Scholar 

  28. C.L. Xie, Y.H. Li, Q. Wang, D. Sun, Y.G. Tang, and H.Y. Wang, Issues and Solutions toward Zinc Anode in Aqueous Zinc-ion Batteries: A Mini Review. Carbon Energy 2, 540 (2020).

    Article  CAS  Google Scholar 

  29. Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li, Y.J. Zhang, C. Wang, and G.L. Cui, Long-life and Deeply Rechargeable Aqueous Zn Anodes Enabled by a Multifunctional Brightener-inspired Interphase. Energy Environ. Sci. 12, 1938 (2019).

    Article  CAS  Google Scholar 

  30. C. Huang, X. Zhao, Y.S. Hao, Y.J. Yang, Y. Qian, G. Chang, Y. Zhang, Q.L. Tang, A.P. Hu, and X.H. Chen, Self-Healing SeO2 Additives Enable Zinc Metal Reversibility in Aqueous ZnSO4 Electrolytes. Adv. Funct. Mater. 32, 2112091 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by the Zhejiang Provincial Natural Science Foundation of China (No. LY21E020010), Scientific Fundamental Fund of Zhejiang Sci-Tech University (Grant No. 21212304-Y and 2021Y005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiancun Liu or Yefeng Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 487 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Liu, T., You, J. et al. Dispersed Zn Nucleation and Growth Induced by Functional Nano-TiO2 Particles for a Stable Zn Metal Anode. J. Electron. Mater. 51, 6645–6653 (2022). https://doi.org/10.1007/s11664-022-09984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09984-y

Keywords

Navigation