Skip to main content
Log in

Tailoring crystallization zinc hydroxide sulfates growth towards stable zinc deposition chemistry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The unstable zinc anode/electrolyte interface induced by corrosion, interfacial water splitting reaction, and dendrite growth seriously degrades the performances of metal Zn anode in aqueous electrolyte. Herein, the nucleation and growth of zinc hydroxide sulfate (ZHS), an interfacial by-product, has been tailored by Tween 80 in the electrolyte, which thereby assists in in-situ forming a dense solid electrolyte interphase (SEI) with small-sized ZHS and evenly distributed Tween 80. This SEI has high corrosion resistance and uniform distribution of zinc ions, which not only contributes to blocking the interfacial side reactions but also induces stable and calm zinc plating/stripping. Consequently, the modified electrolyte can confer the assembled Zn∥Zn symmetric cell with a stable operation life over 1500 h at 1 mA·cm−2 and 1 mAh·cm−2 as well as the practical Zn∥NH4V4O10 full battery with a high-rate capacity of 120 mAh·g−1 at the current density of 5 A·g−1. This work provides a way for regulating and reusing interfacial by-products, and a new sight on stabilization electrodes/electrolyte interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pathak, R.; Chen, K.; Wu, F.; Mane, A. U.; Bugga, R. V.; Elam, J. W.; Qiao, Q.; Zhou, Y. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Mater. 2021, 41, 448–465.

    Article  Google Scholar 

  2. Wippermann, K.; Schultze, J. W.; Kessel, R.; Penninger, J. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives. Corros. Sci. 1991, 32, 205–230.

    Article  CAS  Google Scholar 

  3. Zhou, X. L.; Ma, K. X.; Zhang, Q. Y.; Yang, G. Z.; Wang, C. X. Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive. Nano Res. 2022, 15, 8039–8047.

    Article  CAS  Google Scholar 

  4. Yuan, L. B.; Hao, J. N.; Kao, C. C.; Wu, C.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 2021, 14, 5669–5689.

    Article  CAS  Google Scholar 

  5. Shin, J.; Lee, J.; Park, Y.; Choi, J. W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen, J. P.; Zhao, W. Y.; Jiang, J. M.; Zhao, X. L.; Zheng, S. H.; Pan, Z. H.; Yang, X. W. Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 2023, 59, 102767.

    Article  Google Scholar 

  7. Guo, J.; Ming, J.; Lei, Y. J.; Zhang, W. L.; Xia, C.; Cui, Y.; Alshareef, H. N. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019, 4, 2776–2781.

    Article  CAS  Google Scholar 

  8. Xie, C. L.; Li, Y. H.; Wang, Q.; Sun, D.; Tang, Y. G.; Wang, H. Y. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review. Carbon Energy 2020, 2, 540–560.

    Article  CAS  Google Scholar 

  9. Feng, D. D.; Cao, F. Q.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives. Small 2021, 17, 2103195.

    Article  CAS  Google Scholar 

  10. Zhang, S. J.; Ye, J. J.; Ao, H. S.; Zhang, M. Y.; Li, X. L.; Xu, Z. B.; Hou, Z. G.; Qian, Y. T. In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res. 2023, 16, 449–457.

    Article  Google Scholar 

  11. Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

    Article  CAS  PubMed  Google Scholar 

  12. Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-sttu solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cao, Z. Y.; Zhu, X. D.; Xu, D. X.; Dong, P.; Chee, M. O. L.; Li, X. J.; Zhu, K. Y.; Ye, M. X.; Shen, J. F. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138.

    Article  Google Scholar 

  14. Hao, J. N.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Zhang, S.; Bo, G. Y.; Wang, C. S.; Guo, Z. P. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

    Article  CAS  Google Scholar 

  15. Guo, Y.; Liu, C.; Xu, L.; Huang, K. X.; Wu, H.; Cai, W. L.; Zhang, Y. A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes. Energy Mater. 2022, 2, 200032.

    Article  CAS  Google Scholar 

  16. Yan, H. B.; Li, S. M.; Nan, Y.; Yang, S. B.; Li, B. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 2021, 11, 2100186.

    Article  CAS  Google Scholar 

  17. He, X. F.; Cui, Y. L. S.; Qian, Y. C.; Wu, Y. D.; Ling, H. Y.; Zhang, H. R.; Kong, X. Y.; Zhao, Y.; Xue, M. Q.; Jiang, L. et al. Anion concentration gradient-assisted construction of a solid-electrolyte interphase for a stable zinc metal anode at high rates. J. Am. Chem. Soc. 2022, 144, 11168–11177.

    Article  CAS  PubMed  Google Scholar 

  18. Di, S. L.; Nie, X. Y.; Ma, G. Q.; Yuan, W. T.; Wang, Y. Y.; Liu, Y. C.; Shen, S. G.; Zhang, N. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021, 43, 375–382.

    Article  Google Scholar 

  19. Yuan, W. T.; Ma, G. Q.; Nie, X. Y.; Wang, Y. Y.; Di, S. L.; Wang, L. B.; Wang, J.; Shen, S. G.; Zhang, N. In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chem. Eng. J. 2022, 431, 134076.

    Article  CAS  Google Scholar 

  20. Tian, H.; Yang, J. L.; Deng, Y. R.; Tang, W. H.; Liu, R. P.; Xu, C. Y.; Han, P.; Fan, H. Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 2023, 13, 2202603.

    Article  CAS  Google Scholar 

  21. Wang, X. Y.; Li, X. M.; Fan, H. Q.; Ma, L. T. Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 2022, 14, 205.

    Article  CAS  Google Scholar 

  22. Yu, X. Y.; Li, Z. G.; Wu, X. H.; Zhang, H. T.; Zhao, Q. G.; Liang, H. F.; Wang, H.; Chao, D. L.; Wang, F.; Qiao, Y. et al. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 2023, 7, 1145–1175.

    Article  CAS  Google Scholar 

  23. Shah, A. T.; Din, M. I.; Farooq, U.; Butt, M. T. Z.; Athar, M.; Chaudhary, M. A.; Ahmad, M. N.; Mirza, M. L. Fabrication of nickel nanoparticles modified electrode by reverse microemulsion method and its application in electrolytic oxidation of ethanol. Colloid Surf. A 2012, 405, 19–21.

    Article  CAS  Google Scholar 

  24. Liu, Y. Y.; Gu, J. J.; Zhang, J. L.; Yu, F.; Wang, J.; Nie, N.; Li, W. LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv. 2015, 5, 9745–9751.

    Article  CAS  Google Scholar 

  25. Du, W. C.; Ang, E. H.; Yang, Y.; Zhang, Y. F.; Ye, M. H.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2020, 13, 3330–3360.

    Article  CAS  Google Scholar 

  26. Yuan, D.; Manalastas, W.; Zhang, L. P.; Chan, J. J.; Meng, S. Z.; Chen, Y. Q.; Srinivasan, M. Lignin@nafion membranes forming Zn solid-electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem 2019, 12, 4889–4900.

    Article  CAS  PubMed  Google Scholar 

  27. Park, S. H.; Byeon, S. Y.; Park, J. H.; Kim, C. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett. 2021, 6, 3078–3085.

    Article  CAS  Google Scholar 

  28. Guo, Y.; Cai, W. L.; Lin, Y.; Zhang, Y. Y.; Luo, S.; Huang, K. X.; Wu, H.; Zhang, Y. An ion redistributor enabled by cost-effective weighing paper interlayer for dendrite free aqueous zinc-ion battery. Energy Storage Mater. 2022, 50, 580–588.

    Article  Google Scholar 

  29. Zhang, Y. J.; Zhu, M.; Wu, K.; Yu, F. F.; Wang, G. Y.; Xu, G.; Wu, M. H.; Liu, H. K.; Dou, S. X.; Wu, C. An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. J. Mater. Chem. A 2021, 9, 4253–4261.

    Article  CAS  Google Scholar 

  30. Guo, S.; Qin, L. P.; Zhang, T. S.; Zhou, M.; Zhou, J.; Fang, G. Z.; Liang, S. Q. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 34, 545–562.

    Article  Google Scholar 

  31. Lu, H. Y.; Liu, L. Y.; Zhang, J. K.; Xu, J. T. Highly durable aqueous Zn ion batteries based on a Zn anode coated by three-dimensional cross-linked and branch-liked bismuth-PVDF layer. J. Colloid Interface Sci. 2022, 617, 422–429.

    Article  CAS  PubMed  Google Scholar 

  32. Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.

    Article  CAS  Google Scholar 

  33. Zhang, X. M.; Luo, H.; Guo, Y.; Xu, C. H. Y.; Deng, Y.; Deng, Z. W.; Zhang, Y. G.; Wu, H.; Cai, W. L.; Zhang, Y. Chemical and electrochemical synergistic weaving stable interface enabling longevous zinc plating/stripping process. Chem. Eng. J. 2023, 457, 141305.

    Article  CAS  Google Scholar 

  34. Xie, K. X.; Ren, K. X.; Wang, Q. H.; Lin, Y. X.; Ma, F. C.; Sun, C.; Li, Y. W.; Zhao, X. S.; Lai, C. In situ construction of zinc-rich polymeric solid-electrolyte interface for high-performance zinc anode. eScience 2023, 3, 100153.

    Article  Google Scholar 

  35. Tang, B. Y.; Zhou, J.; Fang, G. Z.; Liu, F.; Zhu, C. Y.; Wang, C.; Pan, A. Q.; Liang, S. Q. Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 2019, 7, 940–945.

    Article  CAS  Google Scholar 

  36. Sun, R.; Qin, Z. X.; Liu, X. L.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries. ACS Sustainable Chem. Eng. 2021, 9, 11769–11777.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Material Corrosion and Protection Key Laboratory of Sichuan Province Support Program (No. 2023CL02), the Yunnan Fundamental Research Projects (No. 202201AU070151), and the Innovation Fund of Postgraduate, Sichuan University of Science & Engineering (No. Y2022010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujie Wang or Yi Guo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Zeng, X., Zhang, D. et al. Tailoring crystallization zinc hydroxide sulfates growth towards stable zinc deposition chemistry. Nano Res. 17, 5243–5250 (2024). https://doi.org/10.1007/s12274-024-6479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6479-7

Keywords

Navigation