Skip to main content
Log in

Recent Advances to Enhance Electrical and Photoelectrical Properties of Antimony Selenide Crystals via Tin Doping

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Tin-doped antimony selenide ((Sn\(_x\)Sb\(_{1-x}\))\(_2\)Se\(_3\)) crystals were grown by direct vapour transport to overcome the challenges posed by the high intrinsic electrical resistivity of Sb\(_2\)Se\(_3\). Energy dispersive analysis of x-ray and scanning electron microscopy were performed to determine elemental chemical composition and morphology of the grown crystals. The powder x-ray diffraction spectra revealed that the (Sn\(_x\)Sb\(_{1-x}\))\(_2\)Se\(_3\) crystals possess an orthorhombic crystal lattice structure. Furthermore, all microstructural parameters were evaluated. The Raman spectra of the grown crystals revealed the structure of Sb\(_2\)Se\(_3\) to be unaltered during Sn doping. The value of the optical band gap of (Sn\(_x\)Sb\(_{1-x}\))\(_2\)Se\(_3\) crystals decreased from 1.20 eV to 0.97 eV as the doping concentration of Sn increased from x = 0.00, 0.10, 0.15, 0.20. Moreover, the decomposition kinetic parameters were evaluated using several kinetic models. The electrical, trap-depth and photoresponse parameters were studied in different samples with variations of temperature and illumination intensity. The exceptional performance of the (Sn\(_x\)Sb\(_{1-x}\))\(_2\)Se\(_3\) crystals suggests that they hold promising potential for applications in highly efficient photoelectric and solar devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The dataset used and analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. S. Chen, X. Qiao, F. Wang, Q. Luo, X. Zhang, X. Wan, Y. Xu, and X. Fan, Acile Synthesis of Hybrid Nanorods with the Sb2Se3/AgSbSe2 Heterojunction Structure for High Performance Photodetectors. Nanoscale 8(4), 2277–2283 (2016)

    Article  CAS  Google Scholar 

  2. K. Zeng, D.J. Xue, and J. Tang, Antimony Selenide Thin-Film Solar Cells. Semicond. Sci. Technol. 31(6), 063001 (2016)

    Article  Google Scholar 

  3. L. Wang, D.B. Li, K. Li, C. Chen, H.X. Deng, L. Gao, Y. Zhao, F. Jiang, L. Li, F. Huang et al., Stable 6%-Efficient Sb2Se3 Solar Cells with a ZnO Buffer Layer. Nat. Energy 2(4), 1–9 (2017)

    Article  Google Scholar 

  4. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou et al., Solution-processed Antimony Selenide Heterojunction Solar Cells. Adv. Energy Mater. 4(8), 1301846 (2014)

    Article  Google Scholar 

  5. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.J. Xue, M. Luo, Y. Cao, Y. Cheng et al., Thin-Film Sb2Se3 Photovoltaics with Oriented One-Dimensional Ribbons and Benign Grain Boundaries. Nat. Photonics 9(6), 409–415 (2015)

    Article  CAS  Google Scholar 

  6. D. Choi, Y. Jang, J. Lee, G.H. Jeong, D. Whang, S.W. Hwang, K.S. Cho, and S.-W. Kim, Diameter-Controlled and Surface-Modified Sb2Se3 Nanowires and Their Photodetector Performance. Sci. Rep. 4, 6714 (2014)

    Article  CAS  Google Scholar 

  7. Y. Zhang, G. Li, B. Zhang, and L. Zhang, Synthesis and Characterization of Hollow Sb2Se3 Nanospheres. Mater. Lett. 58(17–18), 2279–2282 (2004)

    Article  CAS  Google Scholar 

  8. C. Chen, W. Li, Y. Zhou, C. Chen, M. Luo, X. Liu, K. Zeng, B. Yang, C. Zhang, J. Han et al., Optical Properties of Amorphous and Polycrystalline Sb2Se3 Thin Films Prepared by Thermal Evaporation. Appl. Phys. Lett. 107(4), 043905 (2015)

    Article  Google Scholar 

  9. S. Chen, K. Shehzad, X. Qiao, X. Luo, X. Liu, Y. Zhang, X. Zhang, Y. Xu, and X. Fan, A High Performance Broadband Photodetector Based on (SnxSb1–x)2Se3 Nanorods with Enhanced Electrical Conductivity. J. Mater. Chem. C 6(41), 11078–11085 (2018)

    Article  CAS  Google Scholar 

  10. F. Aousgi and M. Kanzari, Study of the Optical Properties of Sn-Doped Sb2S3 Thin Films. Energy Proc. 10, 313–322 (2011)

    Article  CAS  Google Scholar 

  11. W.D. Callister and D.G. Rethwisch, Mater. Sci. Eng.: An Int., vol. 9 (Wiley, New York, 2018)

    Google Scholar 

  12. C.H. Hu, M.H. Chiang, M.S. Hsieh, W.T. Lin, Y.S. Fu, and T.F. Guo, Phase Formation, Morphology Evolution and Tunable Bandgap of Sn1–xSbxSe Nanocrystals. Cryst. Eng. Comm. 16(9), 1786–1792 (2014)

    Article  CAS  Google Scholar 

  13. P. Patel, H. Desai, J. Dhimmar, and B. Modi, X-ray Analysis of InxSe1-x Crystals by Scherrer, Williamson-Hall and Size-strain Plot Methods, i-Manager’s. J. Mater. Sci. 6(3), 34 (2018)

    Google Scholar 

  14. G. Ghosh, The Sb-Se (Antimony-Selenium) System. J. Phase Equilib. 14(6), 753–763 (1993)

    Article  CAS  Google Scholar 

  15. S. Chen, X. Qiao, Z. Zheng, M. Cathelinaud, H. Ma, X. Fan, and X. Zhang, Enhanced Electrical Conductivity and Photoconductive Properties of Sn-Doped Sb2Se3 Crystals. J. Mater. Chem. C 6(24), 6465–6470 (2018)

    Article  CAS  Google Scholar 

  16. M.E. Galvez, R. Jacot, J. Scheffe, T. Cooper, and G. Patzke, A. Steinfeld, Physico-Chemical Changes in Ca, Sr and Al-Doped La-Mn-O Perovskites Upon Thermochemical Splitting of CO2 via Redox Cycling. Phys. Chem. Chem. Phys. 17, 6629–6634 (2015)

    Article  CAS  Google Scholar 

  17. S.H. Chaki, M.D. Chaudhary, and M. Deshpande, Effect of Indium and Antimony Doping in SnS Single Crystals. Mater. Res. Bull. 63, 173–180 (2015)

    Article  CAS  Google Scholar 

  18. M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, Structural, Optical and Magnetic Studies on Non-Aqueous Synthesized CdS: Mn Nanomaterials. J. Alloy. Compd. 538, 48–55 (2012)

    Article  CAS  Google Scholar 

  19. P. Patel, J. Dhimmar, B. Modi, H. Desai, The Advancement of Compelling Indium Selenide: Synthesis, Structural Studies, Optical Properties and Photoelectrical Applications, J. Mater. Sci.: Mater. Electron. (2020) 1-9.

  20. Y.H. Ge, Y.Y. Guo, W.M. Shi, Y.H. Qiu, and G.P. Wei, Influence of In-Doping on Resistivity of Chemical Bath Deposited SnS Films. J. Shanghai Univ. 11(4), 403–406 (2007)

    Article  CAS  Google Scholar 

  21. M. Dharsana and S. Sindhu, Antimony Selenide Nanoparticles as Panchromatic Sensitizer: Fast Synthesis and Study of Their Photovoltaic Behavior. Mater. Lett. 183, 448–450 (2016)

    Article  CAS  Google Scholar 

  22. Z. Ivanova, E. Cernoskova, V. Vassilev, and S. Boycheva, Thermomechanical and Structural Characterization of GeSe2-Sb2Se3-ZnSe Glasses. Mater. Lett. 57(5–6), 1025–1028 (2003)

    Article  CAS  Google Scholar 

  23. S. Wang and N. Ye, Na2CsBe6B5O15: An Alkaline Beryllium Borate as a Deep UV Nonlinear Optical Crystal. J. Am. Chem. Soc. 133(30), 11458–11461 (2011)

    Article  CAS  Google Scholar 

  24. Z.M. Gibbs, A. LaLonde, and G.J. Snyder, Optical Band Gap and the Burstein-moss Effect in Iodine Doped Pbte Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy. New J. Phys. 15(7), 075020 (2013)

    Article  CAS  Google Scholar 

  25. A. Broido and A Simple, Sensitive Graphical Method of Treating Thermogravimetric Analysis Data. J. Poly. Sci. Part A-2: Poly. Phys. 7(10), 1761–1773 (1969)

    Article  CAS  Google Scholar 

  26. A.W. Coats and J. Redfern, Kinetic Parameters from Thermogravimetric Data. Nature. 201(4914), 68–69 (1964)

    Article  CAS  Google Scholar 

  27. H.H. Horowitz and G. Metzger, A New Analysis of Thermogravimetric Traces. Anal. Chem. 35(10), 1464–1468 (1963)

    Article  CAS  Google Scholar 

  28. Chao Chen et al., Characterization of Basic Physical Properties of Sb2Se3 and its Relevance for Photovoltaics. Front. Optoelectron. 10(1), 18–30 (2017)

    Article  Google Scholar 

  29. C. Viswanathan, S. Gopal, M. Thamilselvan, K. Premnazeer, D. Mangalaraj, S.K. Narayandass, J. Yi, and D.C. Ingram, Space Charge Limited Current, Variable Range Hopping and Mobility Gap in Thermally Evaporated Amorphous InSe Thin Films. J. Mater. Sci.: Mater. Electron. 15(12), 787–792 (2004)

    CAS  Google Scholar 

  30. R. Tailor, P. Patel, and H. Desai, Synthesis of a Cu1.96S:PVA Nanocomposite for Breath Monitoring and Pressure Sensing Applications, J. Electron. Mater. (2021) 1-10.

  31. R. Sarma and N. Mazumdar, Study of Trap Depth Characteristics in ZnTe Thin Films Based on Photocurrent Decay. Indian J. Phys. 78, 389–391 (2004)

    Google Scholar 

  32. H. Desai, J. Dhimmar, and B. Modi, A Study of Photo-response and Photoelectrical Properties of Cadmium Telluride Thin Film. Optik. 127(16), 6377–6383 (2016)

    Article  CAS  Google Scholar 

  33. H. Desai, P. Patel, J. Dhimmar, and B. Modi, Approaching New Photoelectrics: Cdte Nano-Crystallite Thin Film. Solid State Communications (2020) 113910.

  34. G.W. Mudd, S.A. Svatek, L. Hague, O. Makarovsky, Z.R. Kudrynskyi, C.J. Mellor, P.H. Beton, L. Eaves, K.S. Novoselov, Z.D. Kovalyuk et al., High Broad-Band Photoresponsivity of Mechanically Formed Inse Graphene van der Waals Heterostructures. Adv. Mater. 27(25), 3760–3766 (2015)

    Article  CAS  Google Scholar 

  35. H.N. Desai et al., Synthesis of Enhanced (Sn0.05Sb0.15)2 (Te0.02Se0.18)3 Crystals for Multi-Sensing Applications. Appl. Phys. A: Mater. Sci. Proc. 128(1), 92 (2022)

    Article  CAS  Google Scholar 

  36. H. Patel, P. Patel, H. Desai, S. Sikligar, J. Dhimmar, and B. Modi, Synthesis and Characterization of Direct Vapour Transport Grown Sb2Se3 Crystals, Mater. Today: Proc. (2020).

  37. Z. Ma, S. Chai, Q. Feng, L. Li, X. Li, L. Huang, and H. Xu, Chemical Vapor Deposition Growth Of High Crystallinity Sb2Se3 Nanowire with Strong Anisotropy for Near-Infrared Photodetectors. Small 15(9), 1805307 (2019)

    Article  Google Scholar 

  38. M. Tannarana, P. Pataniya, G.K. Solanki, S.B. Pillai, K.D. Patel, P.K. Jha, and V.M. Pathak, Influence of Alloy Engineering on Structural and Photo Detection Properties of SbxSn1-xSe2 Ternary Alloys. Appl. Surf. Sci. 462, 856–861 (2018)

    Article  CAS  Google Scholar 

  39. A.J. Khimani, S.H. Chaki, M.P. Deshpande, S.M. Chauhan, and J.P. Tailor, Alloy Engineering to Promote Photodetection in InxSn1-xS2 and SbxSn1-xS2 Ternary Alloys. Mater. Lett. 236, 187–189 (2019)

    Article  CAS  Google Scholar 

  40. Y. Liu, J. Yang, E. Gu, T. Cao, Z. Su, L. Jiang, and Y. Liu, Colloidal Synthesis and Characterisation of Cu3SbSe3 Nanocrystals. J. Mater. Chem. A 2(18), 6363–6367 (2014)

    Article  CAS  Google Scholar 

  41. C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, and V.M. Pathak, Alloy Engineering for Enhanced Photodetection in VxSn1-xSe2 Ternary Crystals. Mater. Lett. 221, 35–37 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Shri Pankajbhai Gijubhai Patel (President of KVNM) and the management of CB Patel Computer College and JNM Patel Science College.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Modi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, H.M., Sikligar, S.P., Patel, P.D. et al. Recent Advances to Enhance Electrical and Photoelectrical Properties of Antimony Selenide Crystals via Tin Doping. J. Electron. Mater. 52, 196–208 (2023). https://doi.org/10.1007/s11664-022-09963-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09963-3

Keywords

Navigation