Skip to main content

Advertisement

Log in

Application of Biomass-Derived Carbon/Flaky Carbonyl Iron Composite for Lightweight and Broadband Microwave Absorption Coating

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The preparation of high-performance microwave absorption materials is essential for practical applications but is challenging, primarily due to the difficulties in large-scale and low-cost synthesis of electromagnetic absorbents. In this study, an eggplant-derived carbon sheet (ECS) and flaky carbonyl iron (FCI) were used for material preparation by large-scale synthesis. The effects of the addition of ECS to FCI on the electromagnetic characteristics and microwave absorption properties were comprehensively investigated. The results showed that desirable electromagnetic parameters and enhanced microwave absorption performance could be realized. Specifically, for a prepared 2.0 mm microwave absorption coating with only 6 wt.% of ECS and 24 wt.% of FCI loading (area density of 0.247 g/cm2), a larger measured effective absorption bandwidth (EAB, reflection loss <  −10 dB) value of 8.34 GHz (9.66–18 GHz) was achieved. The lightweight broadband microwave absorption coating was provided by the synergistic enhancement effect of the filled ECS and FCI, which exhibits a high potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Janem, Z.S. Azizi, and M.M. Tehranchi, Broadband microwave absorber based on patterned surface structure. J. Mater. Sci. Mater. Electron. 33, 11078 (2022).

    Article  CAS  Google Scholar 

  2. M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, and J. Yuan, Electromagnetic absorber converting radiation for multifunction. Mater. Sci. Eng. R Rep. 145, 100627 (2021).

    Article  Google Scholar 

  3. L. Wang, X. Li, X.F. Shi, M.Q. Huang, X.H. Li, Q.W. Zeng, and R.C. Che, Recent progress of microwave absorption microspheres by magnetic-dielectric synergy. Nanoscale 13, 2136 (2021).

    Article  CAS  Google Scholar 

  4. J. Ding, L.G. Cheng, and W.X. Zhao, Self-assembly magnetic feco nanostructures on oxide graphene for enhanced microwave absorption. J. Electron. Mater. 51, 2856 (2022).

    Article  CAS  Google Scholar 

  5. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, and K. Kubanych, Microwave absorbing properties of ferrites and their composites: a review. J. Magn. Magn. Mater. 529, 167839 (2021).

    Article  CAS  Google Scholar 

  6. H. Kaur, K.S. Bhatia, B.S. Tewari, P. Mandal, and A. Dhyani, Infuence of Co-In Doping in M-type barium-strontium hexagonal ferrite on microwave absorption. J. Electron. Mater. 51, 4152 (2022).

    Article  CAS  Google Scholar 

  7. X.M. Wu, Y.L. Yao, Y.Q. Fan, Z. Zhao, and J. Zhan, Designing Co-based microwave absorber with high absorption and thin thickness based on structure regulations. J. Mater. Sci. Mater. Electron. 32, 28648 (2021).

    Article  CAS  Google Scholar 

  8. S. Ajia, H. Asa, Y. Toyoda, M. Sato, M. Matsuura, N. Tezuka, and S. Sugimoto, Development of an alternative approach for electromagnetic wave absorbers using Fe-Cr-Co alloy powders. J. Alloys Compd. 903, 163920 (2022).

    Article  CAS  Google Scholar 

  9. Q. Li, Z. Zhang, L.P. Qi, Q.L. Liao, Z. Kang, and Y. Zhang, Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019).

    Article  Google Scholar 

  10. Y.M. Jiao, Q. Song, X.M. Yin, L.Y. Han, W. Li, and H.J. Li, Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band. J. Mater. Sci. Technol. 119, 200 (2022).

    Article  Google Scholar 

  11. B. Bateer, J.J. Zhang, H.C. Zhang, X.C. Zhang, C.Y. Wang, and H.Q. Qi, Easily dispersible NiFe2O4/RGO composite for microwave absorption properties in the X-band. J. Electron. Mater. 47, 292 (2018).

    Article  CAS  Google Scholar 

  12. A.P. Ilyushchanka, S.G. Baray, A.I. Letsko, T.L. Talako, Y.D. Manoila, Y. Janu, V.S. Chauhan, M.K. Patra, and L. Saini, High-temperature-resistant, mechanically stable FeCrNiAl/Al2O3 thermally sprayed thick ceramic coatings for stealth applications over X-band. Adv. Eng. Mater. 24, 2200169 (2022).

    Article  CAS  Google Scholar 

  13. S. Singh, A. Kumar, and D. Singh, Enhanced microwave absorption performance of SWCNT/SiC Composites. J. Electron. Mater. 49, 7279 (2020).

    Article  Google Scholar 

  14. Y.Z. Jiao, F. Wu, A. Xie, L.P. Wu, W. Zhao, X.F. Zhu, and X.L. Qi, Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption. Chem. Eng. J. 398, 125591 (2020).

    Article  CAS  Google Scholar 

  15. B.C. Wang, J.Q. Wei, Y. Yang, T. Wang, and F.S. Li, Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 323, 1101 (2011).

    Article  CAS  Google Scholar 

  16. Y.X. Pan, G.J. Ma, X. Liu, C.H. Wang, N. Li, J.Y. Wang, and X.G. Jian, Electromagnetic and microwave absorption properties of coatings based on spherical and faky carbonyl iron. J. Mater. Sci. Mater. Electron. 30, 18123 (2019).

    Article  CAS  Google Scholar 

  17. J. He, H. Luo, L.H. He, S.Q. Yan, D.Y. Shan, S.X. Huang, and L.W. Deng, Investigation on microwave dielectric behavior of flaky carbonyl iron composites. J. Mater. Sci. Mater. Electron. 29, 15112 (2018).

    Article  CAS  Google Scholar 

  18. P.C. Ji, G.Z. Xie, N.Y. Xie, J. Li, J. Chen, and J.W. Chen, Microwave absorbing properties of flaky carbonyl iron powder prepared by rod milling method. J. Electron. Mater. 48, 2495 (2019).

    Article  CAS  Google Scholar 

  19. S.M. Wang, X.G. Huang, and W.L. Zhang, Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties. Appl. Phys. A 127, 742 (2021).

    Article  CAS  Google Scholar 

  20. Y. Liu, X.L. Su, F. Luo, J. Xu, J.B. Wang, X.H. He, and Y.H. Qu, Enhanced electromagnetic and microwave absorption properties of carbonyl iron/Ti3SiC2/epoxy resin coating. J. Mater. Sci. Mater. Electron. 29, 2500 (2018).

    Article  CAS  Google Scholar 

  21. H.Y. Wang, D.M. Zhu, W.C. Zhou, and F. Luo, Electromagnetic and microwave absorption properties of the carbonyl Iron/Tic hybrid powders in the X band. Int. J. Magn. Electron. 2, 005 (2016).

    Google Scholar 

  22. S.Q. Yan, C. Cao, J. He, L.H. He, and Z.W. Qu, Investigation on the electromagnetic and broadband microwave absorption properties of Ti3C2 MXene/flaky carbonyl iron composites. J. Mater. Sci. Mater. Electron. 30, 6537 (2019).

    Article  CAS  Google Scholar 

  23. H.Q. Zhao, Y. Cheng, W. Liu, L.J. Yang, B.S. Zhang, L.Y.P. Wang, G.B. Ji, and Z.C.J. Xu, Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019).

    Article  CAS  Google Scholar 

  24. R. Qiang, S.B. Feng, Y. Chen, Q. Ma, and B.W. Chen, Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption. J. Colloid Interface Sci. 606, 406 (2022).

    Article  CAS  Google Scholar 

  25. P.T. Hu, S. Dong, X.T. Li, J.M. Chen, and P. Hu, Flower-like NiCo2S4 microspheres based on nanosheet self-assembly anchored on 3D biomass-derived carbon for efficient microwave absorption. ACS Sustain. Chem. Eng. 8, 10230 (2020).

    Article  CAS  Google Scholar 

  26. H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, and Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245 (2019).

    Article  CAS  Google Scholar 

  27. H.T. Guan, Q.Y. Wang, X.F. Wu, J. Pang, Z.Y. Jiang, G. Chen, C.J. Dong, L.H. Wang, and C.H. Gong, Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. B. Eng. 207, 108562 (2021).

    Article  CAS  Google Scholar 

  28. Y. Wei, H.J. Liua, S.C. Liu, M.M. Zhang, Y.P. Shi, J.W. Zhang, L. Zhanga, and C.H. Gong, Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 9, 70 (2018).

    Article  Google Scholar 

  29. D. Micheli, C. Apollo, R. Pastore, P. Roberto, B.M. Ramon, L. Susanna, and M. Mario, Nanostructured composite materials for electromagnetic interference shielding applications. Acta Astronaut. 69, 747 (2015).

    Article  Google Scholar 

  30. F. Pan, Z.C. Liu, B.W. Deng, Y.Y. Dong, X.J. Zhu, C. Huang, and W. Lu, Lotus Leaf-derived gradient hierarchical Porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021).

    Article  Google Scholar 

  31. X.F. Zhou, Z.R. Jia, A.L. Feng, K.K. Wang, X.H. Liu, L. Chen, H.J. Cao, and G.L. Wu, Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos. Commun. 21, 100404 (2020).

    Article  Google Scholar 

  32. Z.R. Jia, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan, and G.L. Wu, Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153 (2022).

    Article  Google Scholar 

  33. F. Chen, H. Luo, Y. Cheng, R. Guo, W. Yang, X. Wang, and R. Gong, Nickel/nickel phosphide composite embedded in N-doped carbon with tunable electromagnetic properties toward high-efficiency microwave absorption. Compos. Part A: Appl. Sci. Manuf. 140, 106141 (2021).

    Article  CAS  Google Scholar 

  34. D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, and M. Zhang, Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18 GHz frequency range. Carbon 80, 103 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4014, 2021JJ40152, 2022JJ30873), the Science and Technology Innovation Program of Hunan Province (2021RC2041), and the State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuoqing Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Shan, D., Ling, J. et al. Application of Biomass-Derived Carbon/Flaky Carbonyl Iron Composite for Lightweight and Broadband Microwave Absorption Coating. J. Electron. Mater. 51, 7134–7142 (2022). https://doi.org/10.1007/s11664-022-09949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09949-1

Keywords

Navigation