Skip to main content
Log in

Impact of Amorphous and Crystalline Tungsten Trioxide (WO3) Thin Films as an Antireflection Material for Silicon (c-Si) Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of single-layer antireflection coatings (SLARCs) on the performance of crystalline silicon (c-Si)-based solar cells have been analyzed numerically. In this study, amorphous (a-WO3) and crystalline (c-WO3) tungsten trioxide was introduced as a SLARC to investigate the performance of photovoltaic cells. Different antireflection coating (ARC) materials including aluminum trioxide (Al2O3), magnesium fluoride (MgF2), titanium dioxide (TiO2), magnesium oxide (MgO), silicon carbide (SiC), silicon dioxide (SiO2), aluminum-doped zinc oxide (AZO), strontium fluoride (SrF2), and titanium nitride (TiN) were used for simulative comparative analysis with WO3 in the search for the highest efficiency of c-Si solar cells. The PC1D simulator was employed to investigate the impact of these ARC materials on device performance. When compared to other ARC materials, the highest efficiency (η) of 19.35% was achieved for a-WO3 thin film with a thickness of 70.7 nm. The a-WO3 ARC layer yielded an open-circuit voltage (Voc) of 0.6363 V, short-circuit current density (Jsc) of 36.86 mA/cm2, and short-circuit current (Isc) of 3.686 A. The Jsc values obtained are in close agreement with the ARC layers' reflectance values. It is important to recognize that the main factors established in this simulation study about SLARC production will make experimental data cheaper and faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.H. Ahmadi, M. Ghazvini, M. Alhuyi Nazari, M.A. Ahmadi, F. Pourfayaz, G. Lorenzini, and T. Ming, Renewable energy harvesting with the application of nanotechnology: a review. Int. J. Eng. Res. 43, 1387 (2019).

    Google Scholar 

  2. D. Ürge-Vorsatz, L.F. Cabeza, S. Serrano, C. Barreneche, and K. Petrichenko, Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 41, 85 (2015).

    Article  Google Scholar 

  3. S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, tandem polymer photovoltaic cells—current status, challenges and future outlook. Energy Environ. Sci. 4, 1606 (2011).

    Article  CAS  Google Scholar 

  4. I.S. Jung, J. Choi, D.K. Shah, and M.S. Akhtar, Development and characterization of solar simulator for solar cells. J. Nanoelectron. Optoelectron. 15, 720 (2020).

    Article  CAS  Google Scholar 

  5. D.K. Shah, Y.-H. Son, H.-R. Lee, M.S. Akhtar, C.Y. Kim, and O.-B. Yang, A stable gel electrolyte based on poly butyl acrylate (PBA)-co-poly acrylonitrile (PAN) for solid-state dye-sensitized solar cells. Chem. Phys. Lett. 754, 137756 (2020).

    Article  Google Scholar 

  6. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. X 4, 1548305 (2019).

    CAS  Google Scholar 

  7. T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks, Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711 (1984).

    Article  Google Scholar 

  8. M.A. Green, Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes. IEEE Trans. Electron Devices 31, 671 (1984).

    Article  Google Scholar 

  9. T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96 (2010).

    Article  Google Scholar 

  10. A. Tavkhelidze, A. Bibilashvili, L. Jangidze, and N.E. Gorji, Fermi-level tuning of G-doped layers. Nano 11, 505 (2021).

    CAS  Google Scholar 

  11. D.D. Smith, P. Cousins, S. Westerberg, R. De Jesus-Tabajonda, G. Aniero, and Y.-C. Shen, Toward the practical limits of silicon solar cells. IEEE. J. Photovolt. 4, 1465 (2014).

    Article  Google Scholar 

  12. R. Sharma, G. Amit, and V. Ajit, Effect of single and double layer antireflection coating to enhance photovoltaic efficiency of silicon solar. J. Nano-Electron. Phys. 9, 2 (2017).

    Article  Google Scholar 

  13. L. Dobrzański, M. Szindler, A. Drygała, and M. Szindler, Silicon solar cells with Al2O3 antireflection coating. Open Phys. 12, 666 (2014).

    Article  Google Scholar 

  14. D. Hocine, M. Belkaid, M. Pasquinelli, L. Escoubas, J. Simon, G. Rivière, and A. Moussi, Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process. Mater. Sci. Semicond. Process. 16, 113 (2013).

    Article  CAS  Google Scholar 

  15. B. Dhamodharan and D.S. Periyasamy, Analysis of solar cell with MGO anti-reflective coating. Int. J. Sci. Res. Dev. 4, 415 (2016).

    CAS  Google Scholar 

  16. A. Sultanov, K. Nussupov, and N. Beisenkhanov, Investigation of SiC based antireflection coatings for Si solar cells by numerical FTDT simulations. Mater. Today Proc. 49, 2511 (2022).

    Article  CAS  Google Scholar 

  17. K. Sobahan, Y.J. Park, J.J. Kim, and C.K. Hwangbo, Nanostructured porous SiO2 films for antireflection coatings. Opt. Commun. 284, 873 (2011).

    Article  CAS  Google Scholar 

  18. P.A. Ilenikhena, Fabrication and optical characterization of improved electroless chemically deposited strontium fluoride (SrF2) thin films at 320 K. J. Niger. Assoc. Math. Phys. 11, 415 (2007).

    Google Scholar 

  19. N. Venugopal, V.S. Gerasimov, A.E. Ershov, S.V. Karpov, and S.P. Polyutov, Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt. Mater. 72, 397 (2017).

    Article  CAS  Google Scholar 

  20. N.M. Saeed and A.M. Suhail, Enhancement the optical properties of zinc sulfide thin films for solar cell applications. Iraqi J. Sci. 53, 88 (2012).

    Google Scholar 

  21. F. Haque, K.S. Rahman, M.A. Islam, Y. Yusoff, N.A. Khan, A.A. Nasser, and N. Amin, Effects of growth temperatures on the structural and optoelectronic properties of sputtered zinc sulfide thin films for solar cell applications. Optical. Quan. Electr. 51, 1 (2019).

    CAS  Google Scholar 

  22. M. Chinnasamy, R. Rathanasamy, S. Sivaraj, G.V. Kaliyannan, M.S. Anbupalani, and S.K. Jaganathan, Influence of ZnSe surface coatings for enhancing the performance of multicrystalline silicon solar cells. J. Electron. Mater. 51, 2833 (2022).

    Article  CAS  Google Scholar 

  23. R.R. Phillips, V. Haynes, D.A. Naylor, and P. Ade, Simple method for antireflection coating ZnSe in the 20 μm wavelength range. Appl. Opt. 47, 870 (2008).

    Article  CAS  Google Scholar 

  24. M.A. Jabbar and T.J. Alwan, Design of anti-reflection coatings for application in the infrared region (10.6 micron). Iraqi J. Sci. (2020). https://doi.org/10.24996/ijs.2020.61.11.13.

    Article  Google Scholar 

  25. M.A. Eghfeli, S.A. Hadi, N.E. Atab, and A. Nayfeh, Presented at the 2016 IEEE 43rd photovoltaic specialists conference (2016), p. 2765.

  26. Y. Lu, X. Zhang, J. Huang, J. Li, T. Wei, P. Lan, Y. Yang, H. Xu, and W. Song, Investigation on antireflection coatings for Al: ZnO in silicon thin-film solar cells. Opt. Int. J. Light Electron Opt. 124, 3392 (2013).

    Article  CAS  Google Scholar 

  27. J.R. Sharma, G. Das, A.B. Roy, S. Bose, and S. Mukhopadhyay, Design analysis of heterojunction solar cells with aligned AZO nanorods embedded in p-type Si wafer. Silicon 12, 305 (2020).

    Article  CAS  Google Scholar 

  28. R. Tällberg, B.P. Jelle, R. Loonen, T. Gao, and M. Hamdy, Comparison of the energy saving potential of adaptive and controllable smart windows: a state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 200, 109828 (2019).

    Article  Google Scholar 

  29. S. Green, J. Backholm, P. Georén, C.-G. Granqvist, and G. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: ion intercalation from different electrolytes. Sol. Energy Mater. Sol. Cells 93, 2050 (2009).

    Article  CAS  Google Scholar 

  30. R.J. Mortimer, Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011).

    Article  CAS  Google Scholar 

  31. C.G. Granqvist, Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1 (2014).

    Article  CAS  Google Scholar 

  32. M. Lahav and M.E. van der Boom, Polypyridyl metallo-organic assemblies for electrochromic applications. Adv. Mater. 30, 1706641 (2018).

    Article  Google Scholar 

  33. W. Wu, M. Wang, J. Ma, Y. Cao, and Y. Deng, Electrochromic metal oxides: recent progress and prospect. Adv. Electron. Mater. 4, 1800185 (2018).

    Article  Google Scholar 

  34. K. Sadeghi, J.-Y. Yoon, and J. Seo, Chromogenic polymers and their packaging applications: a review. Polym. Rev. 60, 442 (2020).

    Article  CAS  Google Scholar 

  35. G.-F. Cai, J.-P. Tu, J. Zhang, Y.-J. Mai, Y. Lu, C.-D. Gu, and X.-L. Wang, An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4, 5724 (2012).

    Article  CAS  Google Scholar 

  36. G. Cai, J. Tu, D. Zhou, L. Li, J. Zhang, X. Wang, and C. Gu, Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J. Phys. Chem. C 118, 6690 (2014).

    Article  CAS  Google Scholar 

  37. J.-H. Zhang, G.-F. Cai, D. Zhou, H. Tang, X.-L. Wang, C.-D. Gu, and J.-P. Tu, Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2, 7013 (2014).

    Article  CAS  Google Scholar 

  38. J. Kim, G.K. Ong, Y. Wang, G. LeBlanc, T.E. Williams, T.M. Mattox, B.A. Helms, and D.J. Milliron, Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15, 5574 (2015).

    Article  CAS  Google Scholar 

  39. D. Zhou, F. Shi, D. Xie, D. Wang, X. Xia, X. Wang, C. Gu, and J. Tu, Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interface Sci. 465, 112 (2016).

    Article  CAS  Google Scholar 

  40. D. Wei, M.R. Scherer, C. Bower, P. Andrew, T. Ryhänen, and U. Steiner, A nanostructured electrochromic supercapacitor. Nano Lett. 12, 1857 (2012).

    Article  CAS  Google Scholar 

  41. A. Llordés, G. Garcia, J. Gazquez, and D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323 (2013).

    Article  Google Scholar 

  42. S. Cong, Y. Tian, Q. Li, Z. Zhao, and F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260 (2014).

    Article  CAS  Google Scholar 

  43. J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921 (2017).

    Article  CAS  Google Scholar 

  44. G.A. Niklasson and C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127 (2007).

    Article  CAS  Google Scholar 

  45. C.C. Mardare and A.W. Hassel, Review on the versatility of tungsten oxide coatings. Phys. Status. Solidi. (a) 216, 1900047 (2019).

    Article  Google Scholar 

  46. C.M. Lampert and C.-G. Granqvist, Presented at the society of photo-optical instrumentation engineers (SPIE) conference series, (1990).

  47. A. Agrawal, J.P. Cronin, and R. Zhang, Review of solid state electrochromic coatings produced using sol-gel techniques. Sol. Energy Mater. Sol. Cells 31, 9 (1993).

    Article  CAS  Google Scholar 

  48. A. Akl, H. Kamal, and K. Abdel-Hady, Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering. Phys. B Condens. Matter. 325, 65 (2003).

    Article  CAS  Google Scholar 

  49. E. Özkan and F. Tepehan, Optical and structural characteristics of sol–gel-deposited tungsten oxide and vanadium-doped tungsten oxide films. Sol. Energy Mater. Sol. Cells 68, 265 (2001).

    Article  Google Scholar 

  50. M. Regragui, M. Addou, A. Outzourhit, K.A. El-Idrissi Elb, and A. Bougrine, Sol. Energy Mater. Sol. Cells 77, 341 (2003).

    Article  CAS  Google Scholar 

  51. H. Kamal, A. Akl, and K. Abdel-Hady, Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO3 films. Phys. B Condens. Matter 349, 192 (2004).

    Article  CAS  Google Scholar 

  52. M.G. Hutchins, O. Abu-Alkhair, M. El-Nahass, and K. Abdel-Hady, Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) Thin films. J. Phys. Condens. Matter 18, 9987 (2006).

    Article  CAS  Google Scholar 

  53. K.H. Tsui, Q. Lin, H. Chou, Q. Zhang, H. Fu, P. Qi, and Z. Fan, Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv. Mater. 26, 2805 (2014).

    Article  CAS  Google Scholar 

  54. D. Kc, D.K. Shah, A.M. Alanazi, and M.S. Akhtar, Impact of different antireflection layers on cadmium telluride (CdTe) solar cells: a PC1D simulation study. J. Electron. Mater. 50, 2199 (2021).

    Article  CAS  Google Scholar 

  55. B. Hussain, A. Ebong, and I. Ferguson, Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 139, 95 (2015).

    Article  CAS  Google Scholar 

  56. G.S. Thirunavukkarasu, M. Seyedmahmoudian, J. Chandran, A. Stojcevski, M. Subramanian, R. Marnadu, S. Alfaify, and M. Shkir, Optimization of mono-crystalline silicon solar cell devices using PC1D simulation. Energies 14, 4986 (2021).

    Article  CAS  Google Scholar 

  57. X. Cai, X. Zhou, Z. Liu, F. Jiang, and Q. Yu, An in-depth analysis of the silicon solar cell key parameters’ optimal magnitudes using PC1D simulations. Optik 164, 105 (2018).

    Article  CAS  Google Scholar 

  58. T. Zhang, L. Wang, J. Zhu, J. Liu, and S. Guo, Electron transport and electrical properties in poly (p-Phenylene Vinylene): methanofullerene bulk-heterojunction solar cells. J. Nanoelectron. Optoelectron. 14, 227 (2019).

    Article  CAS  Google Scholar 

  59. D. Kc, D.K. Shah, M.S. Akhtar, M. Park, C.Y. Kim, O.-B. Yang, and B. Pant, Numerical investigation of graphene as a back surface field layer on the performance of cadmium telluride solar cell. Molecules 26, 3275 (2021).

    Article  Google Scholar 

  60. M. Basher, M.K. Hossain, and M. Akand, Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik 176, 93 (2019).

    Article  CAS  Google Scholar 

  61. T.M. Clarke and J.R. Durrant, Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736 (2010).

    Article  CAS  Google Scholar 

  62. E. Alarousu, A.M. El-Zohry, J. Yin, A.A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. AlSaggaf, A.V. Malko, and O.M. Bakr, Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths. J. Phys. Chem. Lett. 8, 4386 (2017).

    Article  CAS  Google Scholar 

  63. G. Hashmi, M.J. Rashid, Z.H. Mahmood, M. Hoq, and M. Rahman, Investigation of the impact of different ARC layers using PC1D simulation: application to crystalline silicon solar cells. J. Theor. Appl. Phys. 12, 327 (2018).

    Article  Google Scholar 

  64. L.R.-D. Marcos, J.I. Larruquert, J.A. Aznárez, M. Fernandez-Perea, R. Soufli, J.A. Méndez, S.L. Baker, and E.M. Gullikson, Optical constants of SrF2 thin films in the 25–780-eV spectral range. J. Appl. Phys. 113, 143501 (2013).

    Article  Google Scholar 

  65. E. Shkondin, T. Repän, O. Takayama, and A. Lavrinenko, High aspect ratio titanium nitride trench structures as plasmonic biosensor. Opt. Mater. Express 7, 4171 (2017).

    Article  CAS  Google Scholar 

  66. T. Amotchkina, M. Trubetskov, D. Hahner, and V. Pervak, Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 59, A40 (2020).

    Article  CAS  Google Scholar 

  67. M.-S. Kim, K.-G. Yim, J.-S. Son, and J.-Y. Leem, Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33, 1235 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Higher Education Commission (HEC) of Pakistan [Grant No. 8615/Punjab/NRPU/R&D/HEC/2017] to Dr. Khuram Ali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuram Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqsood, S., Ali, K., Ali, Z. et al. Impact of Amorphous and Crystalline Tungsten Trioxide (WO3) Thin Films as an Antireflection Material for Silicon (c-Si) Solar Cells. J. Electron. Mater. 52, 165–176 (2023). https://doi.org/10.1007/s11664-022-09939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09939-3

Keywords

Navigation