Skip to main content

Advertisement

Log in

PVC/Ti2C MXene/Diamond-Blend Films with High Dielectric Constants and Breakdown Strength Due to Electrical Synergy Between the Filler Materials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polymer/conductor composites are used in energy storage capacitors; however, they exhibit high interface leakage currents, causing low breakdown strength. Here, a ternary-blend strategy was used to synthesize polyvinyl chloride (PVC)/titanium carbide transition-metal carbide two-dimensional nanolayered material (Ti2C MXene)/diamond composites using solution casting. The PVC matrix exhibited low polarity and high insulation, while the Ti2C MXene and diamond fillers exhibited high conductivities and ultrahigh insulation properties, respectively. Overall, the PVC/Ti2C/diamond ternary composites exhibited better electrical properties than the PVC/Ti2C binary composites. In the ternary composites, PVC/Ti2C interface polarization caused high dielectric constants, while low leakage currents induced by diamond caused low dielectric losses and high breakdown strength. The optimum-composition (12 wt.% Ti2C and 4 wt.% diamond) ternary composite exhibited a high dielectric constant (~153 at 100 Hz), low dielectric loss (~0.14 at 100 Hz), low conductivity (~1.4 × 10−6 S m−1 at 100 Hz), and high breakdown strength (~312 MV m−1 under a direct current field). This study indicates a synergistic effect between Ti2C MXene and diamond in the composite dielectrics, and could guide the fabrication of dielectric films for capacitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, and J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018).

    Article  Google Scholar 

  2. S.A. Sherrill, P. Banerjee, G.W. Rubloff, and S. Lee, High to ultra-high power electrical energy storage. Phys. Chem. Chem. Phys. 13, 20714 (2011).

    Article  CAS  Google Scholar 

  3. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, and Q. Zhang, Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 25, 1734 (2013).

    Article  CAS  Google Scholar 

  4. Q. Deng, W. Xiong, B. Mao, M. Bo, and Y. Feng, Enhanced dielectric response of ternary polymeric composite films via interfacial bonding between V2C MXene and wide-bandgap ZnS. Ceram. Int. 47, 32938 (2021).

    Article  CAS  Google Scholar 

  5. Y. Zhang, S. Li, X. Cong, C. Zhang, Y. Feng, Y. Zhang, T. Zhang, Q. Chi, X. Wang, and Q. Lei, Interesting influence of different inorganic particles on the energy storage performance of a polyethersulfone-based dielectric composite. ACS Appl. Energy Mater. 5, 3545 (2022).

    Article  CAS  Google Scholar 

  6. D.Q. Tan, The search for enhanced dielectric strength of polymer-based dielectrics: a focused review on polymer nanocomposites. J. Appl. Polym. Sci. 137, 49379 (2020).

    Article  CAS  Google Scholar 

  7. Y. Shen, Y. Lin, M. Li, and C.W. Nan, High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 19, 1418 (2007).

    Article  CAS  Google Scholar 

  8. B. Li, C.A. Randall, and E. Manias, Polarization mechanism underlying strongly enhanced dielectric permittivity in polymer composites with conductive fillers. J. Phys. Chem. C. 126, 7596 (2022).

    Article  CAS  Google Scholar 

  9. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, and G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 57, 660 (2012).

    Article  CAS  Google Scholar 

  10. B. Zhao, M. Hamidinejad, C. Zhao, R. Li, S. Wang, Y. Kazemi, and C. Park, A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss. J. Mater. Chem. A 7, 133 (2019).

    Article  CAS  Google Scholar 

  11. P. Eltouby, I. Shyha, C. Li, and J. Khaliq, Factors affecting the piezoelectric performance of ceramic-polymer composites: a comprehensive review. Ceram. Int. 47, 17813 (2021).

    Article  CAS  Google Scholar 

  12. N.J. Prakash and B. Kandasubramanian, Nanocomposites of MXene for industrial applications. J. Alloys Compd. 862, 158547 (2021).

    Article  Google Scholar 

  13. M. Carey and M.W. Barsoum, MXene polymer nanocomposites: a review. Mater. Today. 9, 100120 (2021).

    Article  CAS  Google Scholar 

  14. Y. Feng, P. Chen, B. Mao, M. Bo, and Q. Deng, Well-coordinated dielectric properties in polymer composites bearing hybrid ceramic via interfacial effect between Ti2C MXene particles and large-aspect-ratio ZrO2 fibers. Colloid. Surface. A 629, 127505 (2021).

    Article  CAS  Google Scholar 

  15. M.A. Saeed, A. Shahzad, K. Rasool, F. Mateen, J.M. Oh, and J.W. Shim, 2D MXene: a potential candidate for photovoltaic cells? A critical review. Adv. Sci. 9, 2104743 (2022).

    Article  CAS  Google Scholar 

  16. X. Chen, X. Han, and Q. Shen, PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 3, 1600460 (2017).

    Article  Google Scholar 

  17. M. Ulusoy, Ş Altındal, Y. Azizian-Kalandaragh, S. Özçelik, and Z. Mirzaei-Kalar, The electrical characteristic of an MIS structure with biocompatible minerals doped (Brushite+Monetite: PVC) interface layer. Microelectron. Eng. 258, 111768 (2022).

    Article  CAS  Google Scholar 

  18. Y. Guan, R. Zhao, Y. Cong, K. Chen, J. Wu, H. Zhu, Z. Dong, Q. Zhang, G. Yuan, Y. Li, J. Zhang, and X. Li, Flexible Ti2C MXene film: synthesis, electrochemical performance and capacitance behavior. Chem. Eng. J. 433, 133582 (2022).

    Article  CAS  Google Scholar 

  19. L. Zhang, J.Q. Zhu, and W.B. Zhou, Heat transfer and electric insulation enhancement of organic shape stabilized phase change materials using diamond particles. Adv. Mat. Res. 347, 2764 (2012).

    Google Scholar 

  20. A.I. Ali, S.A. Salim, and E.A. Kamoun, Novel glass materials-based (PVA/PVP/Al2O3/SiO2) hybrid composite hydrogel membranes for industrial applications: synthesis, characterization, and physical properties. J. Mater. Sci.-Mater. El. 33, 10572 (2022).

    Article  CAS  Google Scholar 

  21. Q. Gu, M. Lu, J. Chen, Y. Qi, and B. Zhang, Three-dimensional architectures based on carbon nanotube bridged Ti2C MXene nanosheets for Li–S batteries. Particuology 57, 139 (2021).

    Article  CAS  Google Scholar 

  22. H. Xu, X. Yin, X. Li, M. Li, L. Zhang, and L. Cheng, Structures, thermal stability and dielectric properties of 2D Ti2C MXenes via annealing under a gas mixture of Ar and H2 atmosphere. Funct. Compos. Struct. 1, 015002 (2019).

    Article  CAS  Google Scholar 

  23. A. Bogatskiy and J.E. Butler, A geometric model of growth for cubic crystals: diamond. Diam. Relat. Mater. 53, 58 (2015).

    Article  CAS  Google Scholar 

  24. M. Al-harahsheh, S. Kingman, L. Al-Makhadmah, and I.E. Hamilton, Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching. J. Hazard. Mater. 274, 87 (2014).

    Article  CAS  Google Scholar 

  25. S. Mazhar, A.A. Qarni, Y.U. Haq, Z.U. Haq, and I. Murtaza, Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram. Int. 46, 12593 (2020).

    Article  CAS  Google Scholar 

  26. H. Aghamohammadi, N. Amousa, and R. Eslami-Farsani, Recent advances in developing the MXene/polymer nanocomposites with multiple properties: a review study. Synthetic. Met. 273, 116695 (2021).

    Article  CAS  Google Scholar 

  27. H. Sakaue, N. Yoshimura, S. Shingubara, and T. Takahagi, Low dielectric constant porous diamond films formed by diamond nanoparticles. Appl. Phys. Lett. 83, 2226 (2003).

    Article  CAS  Google Scholar 

  28. T. Kondo, Conductive boron-doped diamond powder/nanoparticles for electrochemical applications. Chem. Lett. 50, 733 (2021).

    Article  CAS  Google Scholar 

  29. Y. Feng, H. Qiu, B. Mao, M. Bo, and Q. Deng, Preparation of hybrid ceramic/PVC composites showing both high dielectric constant and breakdown strength ascribed to interfacial effect between V2C MXene and Cu2O. Colloid. Surface. A 630, 127650 (2021).

    Article  CAS  Google Scholar 

  30. H. Minama, K. Watanabe, and K. Masui, Electrical discharge machining for sintered polycrystalline diamond using bi-polar pulse generator. Int. J. Electr. Mach. 26, 60 (2021).

    Article  Google Scholar 

  31. M.P. Ghosh, and S. Mukherjee, Dielectric and electrical characterizations of transition metal ions-doped nanocrystalline nickel ferrites. Appl. Phys. A 125, 1 (2019).

    Google Scholar 

  32. N.M. Abdel-Gawad, D.E.A. Mansour, A.Z. El Dein, H.M. Ahmed, M. Darwish, in MEPCON Conference Proceedings (2016), p. 693

  33. Q. Zhang, X. Zhang, Y. Xiao, C. Li, H.H. Tan, J. Liu, and Y. Wu, Theoretical insights into the favorable functionalized Ti2C-based MXenes for lithium-sulfur batteries. ACS Omega 5, 29272 (2020).

    Article  CAS  Google Scholar 

  34. R. Kalish, Doping of diamond. Carbon 37, 781 (1999).

    Article  CAS  Google Scholar 

  35. B. Mao and X. Zhao, High dielectric properties of polymer-based ternary blend films using fillers’ synergy between asymmetrical Na-bearing OH-C60 and insulative diamond. Curr. Appl. Phys. 34, 76 (2022).

    Article  Google Scholar 

  36. M.G. Danikas, T. Tanaka, in EIM Conference Proceedings (2009), p. 19

  37. Q.K. Feng, J.B. Ping, J. Zhu, J.Y. Pei, L. Huang, D.L. Zhang, Y. Zhao, S.L. Zhong, and Z.M. Dang, All-organic dielectrics with high breakdown strength and energy storage density for high-power capacitors. Macromol. Rapid. Commun. 42, 2100116 (2021).

    Article  CAS  Google Scholar 

  38. D. Xu, Z. Li, L. Li, and J. Wang, Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv. Funct. Mater. 30, 2000712 (2020).

    Article  CAS  Google Scholar 

  39. M. Jaiswal and R. Menon, Polymer electronic materials: a review of charge transport. Ploym. Int. 55, 1371 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Prof. Zhi Hu in Nanchang University and Prof. Hongtao Cheng in Xiangyang Polytechnic for language polishing help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, Z., Liu, H. & Xiong, W. PVC/Ti2C MXene/Diamond-Blend Films with High Dielectric Constants and Breakdown Strength Due to Electrical Synergy Between the Filler Materials. J. Electron. Mater. 51, 6964–6974 (2022). https://doi.org/10.1007/s11664-022-09926-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09926-8

Keywords

Navigation