Skip to main content

Advertisement

Log in

Enhanced Dielectric Properties of Polymer Composites with Polar Fe2TiO5 and Non-polar Diamond Nanofillers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A major disadvantage of dielectric materials is their low energy density. In this study, we used a poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix, polar ferrous titanate (FTO) nanofillers, and non-polar diamond nanofillers to prepare composite thin films with enhanced dielectric properties. Two types of nanocomposite films, namely, PVDF-HFP/FTO and PVDF-HFP/FTO/diamond, were fabricated and their electric properties were measured under the application of a low electric field. The binary composites exhibited a high dielectric constant and high dielectric loss, whereas the ternary composites exhibited a high dielectric constant and low dielectric loss. FTO, which has a high dielectric response and conductivity, interacts with the polymer, which has a low conductivity, to increase the dielectric constant of the ternary composites. The insulating diamond nanoparticles cause the leakage current to branch out, thereby reducing the dielectric loss. The optimal ternary composite consisted of 30 wt% FTO and 2 wt% diamond. It exhibited the most balanced dielectric properties (dielectric constant of ~ 40 and dielectric loss of ~ 0.4) and a low conductivity of ~ 7 × 10–7 S m–1 at 100 Hz. This work aims to facilitate the large-scale preparation of advanced polymer nanocomposites for applications in capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, and B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5 (2020).

    Article  Google Scholar 

  2. L. Liu, J. Qu, A. Gu, and B. Wang, Percolative polymer composites for dielectric capacitors: a brief history, materials, and multilayer interface design. J. Mater. Chem. A 8, 18515 (2020).

    Article  CAS  Google Scholar 

  3. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3, 1330001 (2013).

    Article  Google Scholar 

  4. A. Shayesteh Zeraati, F. Sharif, E. Aliabadian, E.P.L. Roberts, and U. Sundararaj, Co-doped electrochemically exfoliated graphene/polymer nanocomposites with high dielectric constant and low dielectric loss for flexible dielectrics and charge storage. ACS Appl. Nano Mater. 3, 4512 (2020).

    Article  CAS  Google Scholar 

  5. Z. He, J. Xie, Z. Liao, Y. Ma, M. Zhang, W. Zhang, H. Yue, and X. Gao, Hierarchical porous structure contained composite polyimide film with enhanced dielectric and water resistance properties for dielectric material. Prog. Organ. Coat. 151, 106030 (2021).

    Article  CAS  Google Scholar 

  6. D. Zhao, L. Yuan, G. Liang, and A. Gu, Orientating carbon nanotube bundles and barium Titanate nanofibers in tri-layer structure to develop high energy density epoxy resin composites with greatly improved dielectric constant and breakdown strength. Compos. B Eng. 173, 107030 (2019).

    Article  Google Scholar 

  7. J. Lin, G. Chen, W. Yang, H. Li, and Q. Lei, New potassium sodium niobate/poly(vinylidene fluoride) functional composite films with high dielectric permittivity. J. Polym. Res. 23, 152 (2016).

    Article  Google Scholar 

  8. Q.K. Feng, S.L. Zhong, J.Y. Pei, Y. Zhao, D.L. Zhang, D.F. Liu, Y.X. Zhang, and Z.M. Dang, Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820 (2022).

    Article  CAS  Google Scholar 

  9. J.W. Zha, M.S. Zheng, B.H. Fan, and Z.M. Dang, Polymer-based dielectrics with high permittivity for electric energy storage: a review. Nano Energy 89, 106438 (2021).

    Article  CAS  Google Scholar 

  10. H. Burgoon, C. Cyrus, D. Skilskyj, J. Thoresen, C. Ebner, G.A. Meyer, P. Filson, L.F. Rhodes, T. Backlund, A. Meneau, T. Cull, and I. Afonina, Photopatterning of low dielectric constant cycloolefin polymers using azides and diazirines. ACS Appl. Polym. Mater. 2, 1819 (2020).

    Article  CAS  Google Scholar 

  11. Y. Gong, D. Chen, J. Duan, X. Zhang, Y. Ma, C. Zhao, and W. Yang, Largely enhanced energy density of BOPP–OBT@CPP–BOPP sandwich-structured dielectric composites. J. Mater. Chem. C 10, 13074 (2022).

    Article  CAS  Google Scholar 

  12. Z. Wang, T. Wang, M. Fang, C. Wang, Y. Xiao, and Y. Pu, Enhancement of dielectric and electrical properties in BFN/Ni/PVDF three-phase composites. Compos. Sci. Technol. 146, 139 (2017).

    Article  CAS  Google Scholar 

  13. B. Luo, X. Wang, H. Wang, Z. Cai, and L. Li, P(VDF-HFP)/PMMA flexible composite films with enhanced energy storage density and efficiency. Compos. Sci. Technol. 151, 94 (2017).

    Article  CAS  Google Scholar 

  14. P. Mao, J. Wang, L. Zhang, Z. Wang, F. Kang, S. Liu, D.B.K. Lim, X. Wang, and H. Gong, Significantly enhanced breakdown field with high grain boundary resistance and dielectric response in 0.1Na0.5Bi0.5TiO3-0.9BaTiO3 doped CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 40, 3011 (2020).

    Article  CAS  Google Scholar 

  15. Y. Jin, N. Xia, and R.A. Gerhardt, Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation. Nano Energy 30, 407 (2016).

    Article  CAS  Google Scholar 

  16. P. Thomas, K.T. Varughese, K. Dwarakanath, and K.B.R. Varma, Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539 (2010).

    Article  CAS  Google Scholar 

  17. A.S. Bhalla, R. Guo, and R. Roy, The perovskite structure—a review of its role in ceramic science and technology. Mater. Res. Innov. 4, 3 (2000).

    Article  CAS  Google Scholar 

  18. T.W. Chen, R. Ramachandran, S.M. Chen, G. Anushya, S. Divya Rani, V. Mariyappan, P. Elumalai, and N. Vasimalai, High-performance-based perovskite-supported nanocomposite for the development of green energy device applications: an overview. Nanomaterials 11, 1006 (2021).

    Article  CAS  Google Scholar 

  19. W. Bootluck, T. Chittrakarn, K. Techato, and W. Khongnakorn, Modification of surface α-Fe2O3/TiO2 photocatalyst nanocomposite with enhanced photocatalytic activity by Ar gas plasma treatment for hydrogen evolution. J. Environ. Chem. Eng. 9, 105660 (2021).

    Article  CAS  Google Scholar 

  20. W. Bootluck, T. Chittrakarn, K. Techato, P. Jutaporn, and W. Khongnakorn, S-scheme α-Fe2O3/TiO2 photocatalyst with Pd cocatalyst for enhanced photocatalytic H2 production activity and stability. Catal. Lett. 152, 2590 (2022).

    Article  CAS  Google Scholar 

  21. M. Kim, J.H. Seo, U. Singisetti, and Z. Ma, Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C 5, 8338 (2017).

    Article  CAS  Google Scholar 

  22. A. Beyler-Çiğil and M.V. Kahraman, Effect of surface modification on nano-diamond particles for surface and thermal property of UV-curable hybrid coating. Prog. Organ. Coat. 101, 468 (2016).

    Article  Google Scholar 

  23. S. Ojha, S.K. Acharya, and R. Gujjala, Characterization and wear behavior of carbon black filled polymer composites. Proc. Mater. Sci. 6, 468 (2014).

    Article  CAS  Google Scholar 

  24. Q. Deng, W. Xiong, B. Mao, M. Bo, and Y. Feng, Enhanced dielectric response of ternary polymeric composite films via interfacial bonding between V2C MXene and wide-bandgap ZnS. Ceram. Int. 47, 32938 (2021).

    Article  CAS  Google Scholar 

  25. J. Bobić, N. Ilić, V. Veerapandiyan, M.V. Petrović, M. Deluca, A. Dzunuzović, J. Vukmirović, K. Ning, K. Reichmann, and S. Tidrow, Tailoring the ferroelectric and magnetic properties of Bi5Ti3FeO15 ceramics by doping with Co and Y. Solid State Sci. 123, 106802 (2022).

    Article  Google Scholar 

  26. M. Enhessari, M.K. Razi, L. Etemad, A. Parviz, and M. Sakhaei, Structural, optical and magnetic properties of the Fe2TiO5 nanopowders. J. Exp. Nanosci. 9, 167 (2014).

    Article  CAS  Google Scholar 

  27. Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4, 3187 (2010).

    Article  CAS  Google Scholar 

  28. J. Liang and T. Weil, Diamond nanothreads built of small aromatic molecules. Matter 5, 2513 (2022).

    Article  CAS  Google Scholar 

  29. M. Ramezani, A. Davoodi, A. Malekizad, and S.M. Hosseinpour-Mashkani, Synthesis and characterization of Fe2TiO5 nanoparticles through a sol–gel method and its photocatalyst applications. J. Mater. Sci. Mater. 26, 3957 (2015).

    Article  CAS  Google Scholar 

  30. L. Gao, J. He, J. Hu, and Y. Li, Large enhancement in polarization response and energy storage properties of poly(vinylidene fluoride) by improving the interface effect in nanocomposites. J. Phys. Chem. C 118, 831 (2014).

    Article  CAS  Google Scholar 

  31. S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, and E.V. Sampathkumaran, Complex dielectric and impedance behavior of magnetoelectric Fe2TiO5. J. Alloys Compd. 663, 289 (2016).

    Article  CAS  Google Scholar 

  32. Q. Zhao, L. Yang, Q. Peng, Y. Ma, H. Ji, and J. Qiu, Achieving superior energy density in ferroelectric P(VDF-HFP) through the employment of dopamine-modified MOFs. Compos. Sci. Technol. 201, 108520 (2021).

    Article  CAS  Google Scholar 

  33. Z. Xie, K. Wu, D. Liu, Q. Zhang, and Q. Fu, One-step alkyl-modification on boron nitride nanosheets for polypropylene nanocomposites with enhanced thermal conductivity and ultra-low dielectric loss. Compos. Sci. Technol. 208, 108756 (2021).

    Article  CAS  Google Scholar 

  34. S.K. Ghosh, A. Biswas, S. Sen, C. Das, K. Henkel, D. Schmeisser, and D. Mandal, Yb3+ assisted self-polarized PVDF based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication. Nano Energy 30, 621 (2016).

    Article  CAS  Google Scholar 

  35. T.J. Kwak, I. Hossen, R. Bashir, W.J. Chang, and C.H. Lee, Localized dielectric loss heating in dielectrophoresis devices. Sci. Rep. 9, 18977 (2019).

    Article  CAS  Google Scholar 

  36. M. Girolami, G. Conte, D.M. Trucchi, A. Bellucci, P. Oliva, T. Kononenko, A. Khomich, A. Bolshakov, V. Ralchenko, V. Konov, N. Skukan, M. Jakšić, I. Sudić, W. Kada, and S. Salvatori, Investigation with β-particles and protons of buried graphite pillars in single-crystal CVD diamond. Diam. Relat. Mater. 84, 1 (2018).

    Article  CAS  Google Scholar 

  37. J.E. Carrera-Crespo, I. Fuentes-Camargo, R.E. Palma-Goyes, U.M. García-Pérez, J. Vazquez-Arenas, I. Chairez, and T. Poznyak, Unrevealing the effect of transparent fluorine-doped tin oxide (FTO) substrate and irradiance configuration to unmask the activity of FTO-BiVO4 heterojunction. Mater. Sci. Semicond. Process. 128, 105717 (2021).

    Article  CAS  Google Scholar 

  38. Y. Feng, H. Qiu, B. Mao, M. Bo, and Q. Deng, Preparation of hybrid ceramic/PVC composites showing both high dielectric constant and breakdown strength ascribed to interfacial effect between V2C MXene and Cu2O. Colloid. Surf. A 630, 127650 (2021).

    Article  CAS  Google Scholar 

  39. G. Kané, M. Lazzeri, and F. Mauri, High-field transport in graphene: the impact of Zener tunneling. J. Phys. Condens. Matter 27, 164205 (2015).

    Article  Google Scholar 

  40. W. Wu, X. Huang, S. Li, P. Jiang, and T. Toshikatsu, Novel three-dimensional zinc oxide superstructures for high dielectric constant polymer composites capable of withstanding high electric field. J. Phys. Chem. C 116, 24887 (2012).

    Article  CAS  Google Scholar 

  41. K. Yang, X. Huang, J. He, and P. Jiang, Strawberry-like core–shell Ag@polydopamine@BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss. Adv. Mater. Interfaces 2, 1500361 (2015).

    Article  Google Scholar 

  42. J.C. de Abreu, J.P. Nery, M. Giantomassi, X. Gonze, and M.J. Verstraete, Spectroscopic signatures of nonpolarons: the case of diamond. Phys. Chem. Chem. Phys. 24, 12580 (2022).

    Article  Google Scholar 

  43. X. Luo, J. Ding, J. Wang, and J. Zhang, Electron transport enhancement in perovskite solar cell via the polarized BaTiO3 thin film. J. Mater. Res. 35, 2158 (2020).

    Article  CAS  Google Scholar 

  44. M. Samet, V. Levchenko, G. Boiteux, G. Seytre, A. Kallel, and A. Serghei, Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J. Chem. Phys. 142, 194703 (2015).

    Article  CAS  Google Scholar 

  45. C. Bradac, T. Gaebel, N. Naidoo, J.R. Rabeau, and A.S. Barnard, Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. Nano Lett. 9, 3555 (2009).

    Article  CAS  Google Scholar 

  46. M.S. Bhutta, T. Xuebang, S. Akram, C. Yidong, X. Ren, M. Fasehullah, G. Rasool, and M.T. Nazir, Development of novel hybrid 2D–3D graphene oxide diamond micro composite polyimide films to ameliorate electrical & thermal conduction. J. Ind. Eng. Chem. 114, 108 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 828 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, P., Chen, P. Enhanced Dielectric Properties of Polymer Composites with Polar Fe2TiO5 and Non-polar Diamond Nanofillers. J. Electron. Mater. 52, 4139–4148 (2023). https://doi.org/10.1007/s11664-023-10411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10411-z

Keywords

Navigation