Skip to main content
Log in

Towards Improved Detectivity and Responsivity Using Graphene Nanoribbons with Width of 10–15 nm for Photodetection Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene nanoribbons (GNRs) are fine strips of unrolled carbon nanotubes (CNTs). GNRs overcome zero-bandgap limitations of graphene and hence can improve the overall performance of optical devices. GNRs possess width-dependent electrical and optical properties which can also be tuned for specific applications. In this work, GNRs of specific width were synthesized and structurally, morphologically, and optically characterized. The resulting GNRs were fabricated on Si/SiO2 substrate between silver interdigitated electrodes for photodetection applications. Depending upon the optical absorbance wavelength of GNRs, experiments were performed on the photodetectors using typical UV–Vis light of 390 nm, 405 nm, and 532 nm. The performance parameters, i.e. detectivity and responsivity, of the GNR/R-GNR-based photodetectors were measured. It was observed that for GNRs of 15 nm width, responsivity values of 0.37 mA/W, 0.16 mA/W, and 0.14 mA/W were found for wavelengths of 390 nm, 405 nm, and 532 nm, respectively, whereas values for GNRs of 10 nm width were 0.6 mA/W, 0.35 mA/W, and 0.45 mA/W for 390 nm, 405 nm, and 532 nm wavelengths, respectively. Similarly, detectivity for 10 nm GNRs was found to be double that of 15 nm GNRs. The response of the present photodetector was compared with values in earlier reports and was found to be superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and K. Geim, Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  2. A.J. Molina-Mendoza, M. Barawi, R. Biele, E. Flores, J.R. Ares, C. Sánchez, and A. Castellanos-Gomez, Electronic Bandgap and Exciton Binding Energy of Layered Semiconductor TiS3. Adv. Electron. Mater. 1, 1500126 (2015).

    Article  Google Scholar 

  3. S. Rahman, F. Ahmad, J. Bansal, R. Tabassum, and A.K. Hafiz, Performance optimization of silicon-doped titanium dioxide and multiwalled carbon nanotubes tricomposite nanostructures for electrical and optical applications. J. Mat. Sci.: Mat. in Elec. 33, 5105–5126 (2022).

    CAS  Google Scholar 

  4. R. Tabassum, and B.D. Gupta, Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium. J. Opt. 18, 015004 (2016).

    Article  Google Scholar 

  5. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H.S. van der Zant, G.A. Steele, Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping. 2D Mater1, 011002 (2014).

  6. Abid, P. Sehrawat, S.S Islam, P. Gulati, M. Talib, P. Mishra, M. Khanuja, Development of Highly Sensitive Optical Sensor from Carbon Nanotube-Alumina Nanocomposite Free-Standing Films: CNTs Loading Dependence Sensor Performance Analysis. Sens. Actuators A, 269, 62–69 (2018).

  7. R.N. Patrick, D. Misse, O.I. Berthebaud, A. Lebedev, and E. Guilmeau. Maignan, Synthesis and Thermoelectric Properties in the 2D Ti1 –xNbxS3 Trichalcogenides. Materials 8, 2514–2522 (2015).

    Article  Google Scholar 

  8. F. Iyikanat, H. Sahin, R.T. Senger, and F.M. Peeters, Vacancy Formation and Oxidation Characteristics of Single Layer TiS3, J. Phys. Chem. C 119, 10709–10715 (2015).

    Article  CAS  Google Scholar 

  9. P.S. Abid, S.S. Islam, P. Mishra, and S. Ahmad, Reduced Graphene Oxide (rGO) based Wideband Optical Sensor and the Role of Temperature, Defect States and Quantum Efficiency. Sci. Rep., V 8, 3537 (2018).

    Article  CAS  Google Scholar 

  10. M. Barawi, E. Flores, M. Ponthieu, José R. Ares, F. Cuevas, and F. Leardini, Hydrogen Storage by Titanium Based Sulfides: Nanoribbons (TiS3) and Nanoplates (TiS2), J. Electric. Engg. 3, 24–29 (2015).

    Google Scholar 

  11. W. Yang, K. Hu, F. Teng, J. Weng, Yong Zhang, and X. Fang, High-Performance Silicon-Compatible Large-Area UV-to-Visible Broadband Photodetector Based on Integrated Lattice-Matched Type II Se/n-Si Heterojunctions. Nano Lett. 18, 4697–4703 (2018).

    Article  CAS  Google Scholar 

  12. M. Mishra, A. Gundimeda, S. Krishna, N. Aggarwal, L.G.B. Gahtori, B. Bhattacharyya, S. Husale, and G. Gupta, Surface-Engineered Nanostructure-Based Efficient Nonpolar GaN Ultraviolet Photodetectors. ACS Omega 3, 2304–2311 (2018).

    Article  CAS  Google Scholar 

  13. X. Fang, Y. Bando, M. Liao, U.K. TianyouZhai, L. Gautam, Y. Koide. Li, and D. Golberg, An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability. Adv. Funct. Mater. 20, 500–508 (2010).

    Article  CAS  Google Scholar 

  14. S. Liu, W. Xiao, M. Zhong, L. Pan, X. Wang, H.X. Deng, J. Liu, J. Li, and Z. Wei, Highly Polarization Sensitive Photodetectors Based on Quasi-1D Titanium Trisulfide (TiS3). Nanotechnology 29, 184002 (2018).

    Article  Google Scholar 

  15. G. Liua, Z. Lia, X. Chena, W. Zhenga, W. Fenga, M. Daia, D. Jiab, Y. Zhoub, and P.A. Hu, Non-Planar Vertical Photodetectors Based on Free-Standing Two-Dimensional SnS2 Nanosheets. Nanoscale 9, 26 (2017).

    Google Scholar 

  16. L.W.J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, and S.T. Lee, MoS 2 /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visible-Near Infrared Photodetectors. Adv. Funct. Mater. 25, 2910–2919 (2015).

    Article  Google Scholar 

  17. S.C. Dhanabalan, J.S. Ponraj, H. Zhang, and Q. Bao, Present Perspectives of Broadband Photodetectors Based on Nanobelts, Nanoribbons, Nanosheets and the Emerging 2D Materials. Nanoscale 8, 6410–6434 (2016).

    Article  CAS  Google Scholar 

  18. B. Zheng, Y. Chen, Z. Wang, F.Q.Z. Huang, X.Hao, P. Li, W. Zhang and Y. Li, Vertically Oriented Few-Layered HfS2 nanosheets: Growth Mechanism and Optical Properties, 2D Mater. 3, 035024. (2016).

  19. X. Bao, Q. Ou, Z.Q. Xu, Y. Zhang, Q. Bao, and H. Zhang, Band Structure Engineering in 2D Materials for Optoelectronic Applications. Adv. Mater. Technol. 3, 1800072 (2018).

    Article  Google Scholar 

  20. Y. Niu, R. Frisenda, E. Flores, J.R. Ares, W. Jiao, D.P. Lara, C. Sánchez, R. Wang, I.J. Ferrer, and A.C. Gomez, Polarization-Sensitive and Broadband PhotodetectionBased on a Mixed-Dimensionality TiS3/Si p–n Junction. Adv. Optical Mater. 6, 1800351 (2018).

    Article  Google Scholar 

  21. K. Rana, J. Singh, and J.H. Ahn, A Graphene-Based Transparent Electrode for Use in Flexible Optoelectronic Devices. J. Mater. Chem. C 2, 2646–2656 (2014).

    Article  CAS  Google Scholar 

  22. B. Rahmati, I. Hajzadeh, R. Karimzadeh, and S.M. Mohseni, Facile, Scalable and Transfer Free Vertical-MoS2 Nanostructures Grown on Au/SiO2 Patterned Electrode for Photodetector Application. Appl. Surf. Sci. 455, 876–882 (2018).

    Article  CAS  Google Scholar 

  23. N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, and M. Terrones, Photosensor Device based on Few-Layered WS2 Films. Adv. Func. Mater. 23, 5511–5517 (2013).

    Article  Google Scholar 

  24. Y. Ning, Z. Zhang, F. Teng, and X. Fang, Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small 14, 1703754 (2018).

    Article  Google Scholar 

  25. Li, C., Wang, H., Wang, F., Li, T., Xu, M., Wang, H., Shen, L. Ultrafast and Broadband Photodetectors Based on a Perovskite/Organic Bulk Heterojunction for Large-Dynamic-Range Imaging. Light: Sci. Appl, 9(1), 1–8. (2020).

  26. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science (Washington, DC, U. S., 2004) , p. 306.

  27. K. Qiao, H. Deng, X. Yang, D. Dong, M. Li, L. Hu, and J. Tang, Spectra-selective PbS Quantum Dot Infrared Photodetectors. Nanoscale 8, 7137–7143 (2016).

    Article  CAS  Google Scholar 

  28. C.T. Chien et al., Tunable Photoluminescence from Graphene Oxide. Angewandte Chemie Int. Ed. 51, 6662–6666 (2012).

    Article  CAS  Google Scholar 

  29. Z. Zhao, C. Xu, L. Niu, X. Zhang, and F. Zhang, Recent Progress on Broadband Organic Photodetectors and Their Applications. Laser Photon. Rev. 14, 2000262 (2020).

    Article  CAS  Google Scholar 

  30. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  CAS  Google Scholar 

  31. C. Livache, B. Martinez, N. Goubet, C. Gréboval, J. Qu, A. Chu, and E. Lhuillier, A Colloidal Quantum Dot Infrared Photodetector and its Use for Intraband Detection. Nat. Commun. 10, 1–10 (2019).

    Article  CAS  Google Scholar 

  32. Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K-S. Moon, and C.P. Wong, Nano. Energy 11, 711 (2015).

    Article  CAS  Google Scholar 

  33. H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, Y. Cui, Broadband Linear-Dichroic Photodetector in a Black Phosphorus Vertical pn Junction. arXiv preprint arXiv:1409.4729. (2014).

  34. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Science 332, 1537 (2011).

    Article  CAS  Google Scholar 

  35. M. Buscema, D.J. Groenendijk, S.I. Blanter, G.A. Steele, H.S. Van Der Zant, and A. Castellanos-Gomez, Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  36. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  37. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, and H. Zhang, Single-Layer MoS2 Phototransistors. ACS Nano 6, 74–80 (2012).

    Article  CAS  Google Scholar 

  38. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and K.A. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  39. Y.R. Tao, J.Q. Chen, J.J. Wu, Y. Wu, and X.C. Wu, Flexible Ultraviolet–Visible Photodetector Based on HfS3 Nanobelt Film. J. Alloy. Compd. 658, 6–11 (2016).

    Article  CAS  Google Scholar 

  40. Y. Zhang, Y-W. Tan, H.L. Stormer, and P. Kim, Nature 438, 20 (2005).

    Google Scholar 

  41. J. Zhang, W. Feng, X. Wang, and K. Xiao, Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Lett. 13, 1649–1654 (2013).

    Article  Google Scholar 

  42. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  CAS  Google Scholar 

  43. P. Avouris, Nano. Lett. 10, 4285 (2010).

    Article  CAS  Google Scholar 

  44. Y. Tao, X. Wu, W. Wang, and J. Wang, Flexiblephotodetector from Ultraviolet to Near Infrared Based on a SnS2 Nanosheet Microsphere Film. J. Mater. Chem. C. 3, 1347–1353 (2015).

    Article  CAS  Google Scholar 

  45. Q. Bao and K.P. Loh, ACS Nano. 6, 3677 (2012).

    Article  CAS  Google Scholar 

  46. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C. 112, 8192 (2008).

    Article  CAS  Google Scholar 

  47. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano. Lett. 8, 920 (2008).

    Article  Google Scholar 

  48. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  49. H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, and D. Li, Adv. Mater. 20, 3557 (2008).

    Article  CAS  Google Scholar 

  50. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C. 113, 1310 (2009).

    Google Scholar 

  51. D. Pan, J. Zhang, Z. Li, and M. Wu, Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 22, 734–738 (2010).

    Article  Google Scholar 

  52. S. Bak, D. Kim, and H. Lee, Graphene Quantum Dots and Their Possible Energy Applications: A Review. Curr. Appl. Phys. 16, 1192–1201 (2016).

    Article  Google Scholar 

  53. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).

    Article  CAS  Google Scholar 

  54. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  55. Y. Sun, Q. Wu, and G. Shi, Energy Environ. Sci. 4, 1113 (2011).

    Article  CAS  Google Scholar 

  56. P. Shende, S. Augustine, and B. Prabhakar, A Review on Graphene Nanoribbons for Advanced Biomedical Applications. Carbon Lett. 30, 465–475 (2020).

    Article  Google Scholar 

  57. Y.F. Hu, J. Zhou, P.H. Yeh, Z. Li, T.Y. Wei, and Z.L. Wang, Supersensitive, Fast Response Nanowire Sensors by Using Schottky Contacts. Adv. Mater. 22, 3327–3332 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Rana Tabassum is thankful to the Department of Science and Technology for the Inspire Faculty award, Reg. No. IFA17-ENG207 with project no. [DST/INSPIRE/04/2017/000141].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Tabassum.

Ethics declarations

Conflict of interest

There is no conflict of interest among the contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S., Faizan, M., Boora, N. et al. Towards Improved Detectivity and Responsivity Using Graphene Nanoribbons with Width of 10–15 nm for Photodetection Applications. J. Electron. Mater. 51, 6815–6826 (2022). https://doi.org/10.1007/s11664-022-09903-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09903-1

Keywords

Navigation