Skip to main content

Advertisement

Log in

A review on graphene nanoribbons for advanced biomedical applications

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphene nanoribbons materialize as a next-generation carrier for development of nanodimensional diagnostic devices and drug delivery systems due to the unique and cutting-edge electronic, thermal, mechanical and optical properties associated with graphene. This review article focuses on the important applications of GNRs in the field of biomedicine and biosensing. Graphene nanoribbons are highly developed form of graphene with a wide importance due to their distinctive properties such as large surface area, enhanced mechanical strength and improved electro-conductivity. GNRs are effective substitutes for conventional silicon-based transistors used in biochemical reactions and exploited in the fields of biomedicine and diagnostics due to their effective uptake by mammalian cells. The cellular interactions of GNRs consist of highly specific receptor-mediated transport, phagocytosis and non-specific transport systems involving copious forces of adhesion. The presence of quantum chains in GNRs increases their potential for fabrication of technically challenging sensing devices in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4-NP:

4-Nonyl-phenol

BBB:

Blood–brain barrier

CNTs:

Carbon nanotubes

DOX:

Doxorubicin

ETV:

Entecavir

FAD:

Flavin––adenine–dinucleotide

GBNMs:

Graphene-based nanomaterials

GCE:

Glassy carbon electrode

GFM:

Glioblastomamultiforme

GNP:

Graphene nanoplatelet

GNP-Dex:

Graphene nanoparticle-dextran

GNRs:

Graphene nanoribbons

GO:

Graphene oxide

LDH:

Lactate dehydrogenase

MIP:

Molecularly imprinted polymer

MNGNR:

Molecularly imprinted-nitrogen-doped graphene nanoribbons

MWCNTs:

Multi-walled carbon nanotubes

NCE:

Nanoparticle cellular endocytosis

NGNRs:

Nitrogen-doped graphene nanoribbons

NP:

Nanoparticle

O-CNHs:

Oxidized-carbon nanohorns

O-CNOs:

Oxidized-carbon nano-onions

O-GNR:

Oxidized graphene nanoribbons

PEI:

Polyethylenimine

QDs:

Quantum dots

ROS:

Reactive oxygen species

r-GO:

Reduced graphene oxide

SWCNTs:

Single-walled carbon nanotubes

References

  1. Kumar A, Sharma K, Dixit AR (2019) A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul. https://doi.org/10.1080/08927022.2019.1680844

    Article  Google Scholar 

  2. Cinti S, Scognamiglio V, Moscone D, Arduini F (2018) Efforts, challenges, and future perspectives of graphene-based (bio)sensors for biomedical applications. In: Choi J et al (eds) Graphene bioelectronics. Elsevier, Amsterdam, pp 133–150

    Chapter  Google Scholar 

  3. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  4. Yang Y, Murali R (2010) Impact of size effect on graphene nanoribbon transport. IEEE Electron Device Lett 31:237–239. https://doi.org/10.1109/LED.2009.2039915

    Article  CAS  Google Scholar 

  5. Yu X, Zhang J, Kang J, Qian H, Yu Z, Tan Y (2011) Study on carrier mobility in graphene nanoribbons. In: International conference on simulation of semiconductor processes and devices, SISPAD, pp 219–222

  6. Ma L, Wang J, Ding F (2013) Recent progress and challenges in graphene nanoribbon synthesis. ChemPhysChem 12:47–54

    Article  Google Scholar 

  7. Kumar A, Sharma K, Dixit AR (2019) Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J Mater Sci. https://doi.org/10.1007/s10853-019-04196-y

    Article  Google Scholar 

  8. Zc Ã, Lin Y, Rooks MJ, Avouris P (2007) Graphene nano-ribbon electronics. IEEE Electron Device Lett 40:228–232. https://doi.org/10.1016/j.physe.2007.06.020

    Article  CAS  Google Scholar 

  9. Celis A, Nair MN, Taleb-Ibrahimi A, Conrad EH, Berger C, De Heer WA, Tejeda A (2016) Graphene nanoribbons: fabrication, properties and devices. J Phys D Appl Phys 49:143001. https://doi.org/10.1088/0022-3727/49/14/143001

    Article  CAS  Google Scholar 

  10. Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805. https://doi.org/10.1103/PhysRevLett.98.206805

    Article  CAS  Google Scholar 

  11. Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano Micro Lett 10:53

    Article  Google Scholar 

  12. Jana A, Scheer E, Polarz S (2017) Synthesis of graphene-transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein J Nanotechnol 8:688–714

    Article  CAS  Google Scholar 

  13. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288. https://doi.org/10.1146/annurev.bioeng.9.060906.152025

    Article  CAS  Google Scholar 

  14. Bahrami AH, Raatz M, Agudo-Canalejo J, Michel R, Curtis EM, Hall CK, Gradzielski M, Lipowsky R, Weikl TR (2014) Wrapping of nanoparticles by membranes. Adv Colloid Interface Sci 208:214–224

    Article  CAS  Google Scholar 

  15. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):523–557

    Article  Google Scholar 

  16. Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28:2915–2922. https://doi.org/10.1016/j.biomaterials.2007.02.013

    Article  CAS  Google Scholar 

  17. Mendonça MCP, Soares ES, de Jesus MB, Ceragioli HJ, Ferreira MS, Catharino RR, da Cruz-Höfling MA (2015) Reduced graphene oxide induces transient blood-brain barrier opening: an in vivo study. J Nanobiotechnol 13:78. https://doi.org/10.1186/s12951-015-0143-z

    Article  CAS  Google Scholar 

  18. Liu Y, Xu L-P, Dai W, Dong H, Wen Y, Zhang X (2015) Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale 7:19060–19065. https://doi.org/10.1039/C5NR06282A

    Article  CAS  Google Scholar 

  19. Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393. https://doi.org/10.1186/1556-276X-9-393

    Article  CAS  Google Scholar 

  20. Kanakia S, Toussaint JD, Mullick Chowdhury S, Tembulkar T, Lee S, Jiang YP, Lin RZ, Shroyer KR, Moore W, Sitharaman B (2014) Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials 35:7022–7031. https://doi.org/10.1016/j.biomaterials.2014.04.066

    Article  CAS  Google Scholar 

  21. Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A, Sgambato A, Campagnolo L (2011) Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano 5:4624–4633. https://doi.org/10.1021/nn200372g

    Article  CAS  Google Scholar 

  22. Chowdhury SM, Kanakia S, Toussaint JD, Frame MD, Dewar AM, Shroyer KR, Moore W, Sitharaman B (2013) In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene. Sci Rep 3:2–4. https://doi.org/10.1038/srep02584

    Article  Google Scholar 

  23. Mao L, Hu M, Pan B, Xie Y, Petersen EJ (2016) Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol 13:1–12. https://doi.org/10.1186/s12989-016-0120-1

    Article  CAS  Google Scholar 

  24. Schinwald A, Murphy FA, Jones A, MacNee W, Donaldson K (2012) Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6:736–746. https://doi.org/10.1021/nn204229f

    Article  CAS  Google Scholar 

  25. Han SG, Kim JK, Shin JH, Hwang JH, Lee JS, Kim TG, Lee JH, Lee GH, Kim KS, Lee HS, Song NW, Ahn K, Yu IJ (2015) Pulmonary responses of sprague-dawley rats in single inhalation exposure to graphene oxide nanomaterials. Biomed Res Int 2015:376756. https://doi.org/10.1155/2015/376756

    Article  CAS  Google Scholar 

  26. Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon N Y 49:986–995. https://doi.org/10.1016/j.carbon.2010.11.005

    Article  CAS  Google Scholar 

  27. d’Amora M, Camisasca A, Lettieri S, Giordani S (2017) Toxicity assessment of carbon nanomaterials in zebrafish during development. Nanomaterials 7:414. https://doi.org/10.3390/nano7120414

    Article  CAS  Google Scholar 

  28. Sawosz E, Jaworski S, Kutwin M, Hotowy A, Wierzbicki M, Grodzik M, Kurantowicz N, Strojny B, Lipińska L, Chwalibog A (2014) Toxicity of pristine graphene in experiments in a chicken embryo model. Int J Nanomed 9:3913–3922. https://doi.org/10.2147/IJN.S65633

    Article  CAS  Google Scholar 

  29. Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, Liu RS, Chang YZ, Chen C (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411. https://doi.org/10.1016/j.biomaterials.2011.09.091

    Article  CAS  Google Scholar 

  30. Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z (2013) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787–2795. https://doi.org/10.1016/j.biomaterials.2013.01.001

    Article  CAS  Google Scholar 

  31. Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon N Y 54:419–434. https://doi.org/10.1016/j.carbon.2012.11.058

    Article  CAS  Google Scholar 

  32. Mullick Chowdhury S, Lalwani G, Zhang K, Yang JY, Neville K, Sitharaman B (2013) Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34:283–293. https://doi.org/10.1016/j.biomaterials.2012.09.057

    Article  CAS  Google Scholar 

  33. De Melo-diogo D, Costa EC, Alves CG, Lima-sousa R (2018) Poxylated graphene oxide nanomaterials for combination chemo-phototherapy of breast cancer cells. Eur J Pharm Biopharm 131:162–169. https://doi.org/10.1016/j.ejpb.2018.08.008

    Article  CAS  Google Scholar 

  34. Kadiyala NK, Mandal BK, Ranjan S, Dasgupta N (2018) Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: evaluation of its biological applications. Mater Sci Eng C 93:191–205. https://doi.org/10.1016/j.msec.2018.07.075

    Article  CAS  Google Scholar 

  35. Chen LQ, Hu PP, Zhang L, Huang SZ, Luo LF, Huang CZ (2012) Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci China Chem 55(10):2209–2216

    Article  CAS  Google Scholar 

  36. Gurunathan S, Iqbal MA, Qasim M, Park CH, Yoo H, Hwang JH, Uhm SJ, Song H, Park C, Do JT, Choi Y, Kim JH, Hong K (2019) Evaluation of graphene oxide induced cellular toxicity and transcriptome analysis in human embryonic kidney cells. Nanomaterials 9:969. https://doi.org/10.3390/nano9070969

    Article  CAS  Google Scholar 

  37. Santos CM, Mangadlao J, Ahmed F, Leon A, Advincula RC, Rodrigues DF (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101. https://doi.org/10.1088/0957-4484/23/39/395101

    Article  CAS  Google Scholar 

  38. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736. https://doi.org/10.1021/nn101390x

    Article  CAS  Google Scholar 

  39. Farid MU, Jeong S, Seo DH, Ahmed R, Lau C, Gali NK, Ning Z, An AK (2018) Mechanistic insight into the in vitro toxicity of graphene oxide against biofilm forming bacteria using laser-induced breakdown spectroscopy. Nanoscale 10:4475–4487. https://doi.org/10.1039/c8nr00189h

    Article  CAS  Google Scholar 

  40. Wen YM, Wang QP, Tang C, Chen ZL (2012) Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans-a comparative study. J Soils Sediment 12:900–908. https://doi.org/10.1007/s11368-012-0520-2

    Article  CAS  Google Scholar 

  41. Guo S, Lin J, Wang Q, Megharaj M, Chen Z (2018) The toxicity of graphene and its impacting on bioleaching of metal ions from sewages sludge by Acidithiobacillus sp. Chemosphere 195:90–97. https://doi.org/10.1016/j.chemosphere.2017.12.073

    Article  CAS  Google Scholar 

  42. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. https://doi.org/10.1021/nn202451x

    Article  CAS  Google Scholar 

  43. Kumar A, Sharma K, Dixit AR (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54:5992–6026. https://doi.org/10.1007/s10853-018-03244-3

    Article  CAS  Google Scholar 

  44. Liu Zhuang, Sun Joshua T, Robinson X, Dai H (2009) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc 130:10876–10877. https://doi.org/10.1021/ja803688x.PEGylated

    Article  Google Scholar 

  45. Lima-Sousa R, de Melo-Diogo D, Alves CG, Costa EC, Ferreira P, Louro RO, Correia IJ (2018) Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr Polym 200:93–99. https://doi.org/10.1016/j.carbpol.2018.07.066

    Article  CAS  Google Scholar 

  46. Chowdhury SM, Surhland C, Sanchez Z, Chaudhary P, Suresh Kumar MA, Lee S, Peña LA, Waring M, Sitharaman B, Naidu M (2015) Graphene nanoribbons as a drug delivery agent for lucanthone mediated therapy of glioblastoma multiforme. Nanomed Nanotechnol Biol Med 11:109–118. https://doi.org/10.1016/j.nano.2014.08.001

    Article  CAS  Google Scholar 

  47. Janani K, John Thiruvadigal D (2018) Density functional study on covalent functionalization of zigzag graphene nanoribbon through l-phenylalanine and boron doping: effective nanocarriers in drug delivery applications. Appl Surf Sci 449:815–822. https://doi.org/10.1016/j.apsusc.2017.12.159

    Article  CAS  Google Scholar 

  48. Lee H, Cohen ML, Louie SG (2010) Selective functionalization of halogens on zigzag graphene nanoribbons: a route to the separation of zigzag graphene nanoribbons. Appl Phys Lett 97:233101. https://doi.org/10.1063/1.3523252

    Article  CAS  Google Scholar 

  49. Suhrland C, Truman J, Sitharaman B, Engineering B (2015) Oxidized graphene nanoribbons as a delivery system for the bioactive sphingolipid ceramide. J Biomed Mater Res 107:25

    Article  Google Scholar 

  50. Lin Q, Huang X, Tang J, Han Y, Chen H (2013) Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system. J Nanopart Res 15:1–7. https://doi.org/10.1007/s11051-013-2144-x

    Article  CAS  Google Scholar 

  51. Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32:3875–3882. https://doi.org/10.1016/j.biomaterials.2011.02.001

    Article  CAS  Google Scholar 

  52. Foreman H-CC, Lalwani G, Kalra J, Krug LT, Sitharaman B (2017) Gene delivery to mammalian cells using a graphene nanoribbon platform. J Mater Chem B 5:2347–2354. https://doi.org/10.1039/C6TB03010F

    Article  CAS  Google Scholar 

  53. Vincent M, De Lázaro I, Kostarelos K (2017) Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther 24:123–132. https://doi.org/10.1038/gt.2016.79

    Article  CAS  Google Scholar 

  54. Deshmukh K, Tanwar YS, Shende P, Cavalli R (2015) Biomimetic estimation of glucose using non-molecular and molecular imprinted polymer nanosponges. Int J Pharm 494:244–248. https://doi.org/10.1016/j.ijpharm.2015.08.022

    Article  CAS  Google Scholar 

  55. Duan H, Wang X, Wang Y, Sun Y, Li J, Luo C (2016) An ultrasensitive lysozyme chemiluminescence biosensor based on surface molecular imprinting using ionic liquid modified magnetic graphene oxide/β-cyclodextrin as supporting material. Anal Chim Acta 918:89–96. https://doi.org/10.1016/j.aca.2016.03.008

    Article  CAS  Google Scholar 

  56. Li Y, Li X, Dong C, Qi J, Han X (2010) A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals. Carbon N Y 48:3427–3433. https://doi.org/10.1016/j.carbon.2010.05.038

    Article  CAS  Google Scholar 

  57. Pan Y, Shang L, Zhao F, Zeng B (2015) A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)-nitrogen-doped graphene nanoribbons-ionic liquid composite film. Electrochim Acta 151:423–428. https://doi.org/10.1016/j.electacta.2014.11.044

    Article  CAS  Google Scholar 

  58. Mahmoudi E, Hajian A, Rezaei M, Afkhami A, Amine A, Bagheri H (2019) A novel platform based on graphene nanoribbons/protein capped Au–Cu bimetallic nanoclusters: application to the sensitive electrochemical determination of bisphenol A. Microchem J 145:242–251. https://doi.org/10.1016/j.microc.2018.10.044

    Article  CAS  Google Scholar 

  59. Alizadeh T, Azizi S (2016) Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Elsevier, Amsterdam

    Book  Google Scholar 

  60. Prabhakar B, Shende P, Augustine S (2018) Current trends and emerging diagnostic techniques for lung cancer. Biomed Pharmacother 106:1586–1599. https://doi.org/10.1016/j.biopha.2018.07.145

    Article  CAS  Google Scholar 

  61. Shende P, Vaidya J, Kulkarni YA, Gaud RS (2017) Systematic approaches for biodiagnostics using exhaled air. J Control Release 268:282–295. https://doi.org/10.1016/j.jconrel.2017.10.035

    Article  CAS  Google Scholar 

  62. Govindasamy M, Mani V, Chen SM, Chen TW, Sundramoorthy AK (2017) Methyl parathion detection in vegetables and fruits using silver@graphene nanoribbons nanocomposite modified screen printed electrode. Sci Rep 7:1–11. https://doi.org/10.1038/srep46471

    Article  CAS  Google Scholar 

  63. Tandel RD, Naik RS, Seetharamappa J (2017) Electrochemical characteristics and electrosensing of an antiviral drug, entecavir via synergic effect of graphene oxide nanoribbons and ceria nanorods. Electroanalysis 29:1301–1309. https://doi.org/10.1002/elan.201600492

    Article  CAS  Google Scholar 

  64. Mehmeti E, Stanković DM, Chaiyo S, Zavasnik J, Žagar K, Kalcher K (2017) Wiring of glucose oxidase with graphene nanoribbons: an electrochemical third generation glucose biosensor. Microchim Acta 184:1127–1134. https://doi.org/10.1007/s00604-017-2115-5

    Article  CAS  Google Scholar 

  65. Banerjee AN (2018) Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 8(3):20170056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shende, P., Augustine, S. & Prabhakar, B. A review on graphene nanoribbons for advanced biomedical applications. Carbon Lett. 30, 465–475 (2020). https://doi.org/10.1007/s42823-020-00125-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00125-1

Keywords

Navigation