Skip to main content

Advertisement

Log in

Optimization of Dye-Sensitized Solar Cell Efficiency by Controlling the Size of Ag Nanoparticle-Assisted TiO2 Nanowire Photoanodes Using the GLAD Technique

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The glancing angle deposition (GLAD) technique was employed to fabricate Ag nanoparticle (NP)-assisted TiO2 nanowire (NW)-based photoanodes using e-beam evaporation for dye-sensitized solar cell (DSSC) applications. Scanning electron microscopy (SEM) images revealed the successful deposition of Ag-NP-assisted (10 nm on top) TiO2-NW (10-nm@top-TAT) on the glass substrate. Further, high-resolution transmission electron microscopy (HR-TEM) analysis of typical 10-nm@top-TAT showed the polycrystalline nature of TiO2 and the presence of Ag-NP crystals, which was supported by selective area electron diffraction (SAED) and x-ray diffraction (XRD) analysis. In addition, the measured length and top diameter of 10-nm@top-TAT were 255 nm and 90–100 nm, respectively. Further, the optical absorption analysis revealed that the annealed Ag-NP-assisted (top and middle) TiO2-NW showed a surface plasmon resonance (SPR) peak in the blue region. Finally, it was observed that the annealed Ag-NP-assisted (10 nm in the middle) TiO2-NW (10-nm@mid-TAT)-based DSSCs showed better efficiency as compared with TiO2-NW and Ag-NP-assisted top of TiO2-NW-based DSSC. This DSSC based on the 10-nm@mid-TAT photoanode exhibited efficiency of 1.41% with corresponding VOC and ISC values of 0.46 V and 6.04 mA/cm2, respectively. Further, electrochemical impedance spectroscopy (EIS) analysis showed a reduction in charge transfer resistance (RC) of the photoanode, supporting the enhanced efficiency from the cell based on the 10-nm@mid-TAT photoanode. Therefore, the proposed method for fabricating photoanodes using the simple GLAD method may be suitable for developing low-cost DSSCs and other optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Perera, Pollution from Fossil-fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J Environ. Res. Public Health 15, 16 (2017).

    Article  CAS  Google Scholar 

  2. M.E. Munawer, Human Health and Environmental Impacts of Coal Combustion and Post-combustion Wastes. J. Sustain. Min. 17, 87–96 (2018).

    Article  Google Scholar 

  3. M.D. Ko, T. Rim, K. Kim, M. Meyyappan, and C.K. Baek, High Efficiency Silicon Solar Cell Based on Asymmetric Nanowire. Sci. Rep. 5, 11646 (2015).

    Article  Google Scholar 

  4. B. O’Regan, and M. Grätzel, A Low-cost, High-efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films. Nature 353, 737–740 (1991).

    Article  Google Scholar 

  5. Z.A. Garmaroudi, and M.R. Mohammadi, Design of TiO2 Dye-sensitized Solar Cell Photoanode Electrodes with Different Microstructures and Arrangement Modes of the Layers. J. Sol. Gel. Sci. Technol. 76, 666–678 (2015).

    Article  CAS  Google Scholar 

  6. S. Hussain, H. Mehmood, M. Khizar, and R. Turan, Design and Analysis of an Ultra-thin Crystalline Silicon Heterostructure Solar Cell Featuring SiGe Absorber Layer. IET Circuits Devices System. 12, 309–314 (2018).

    Article  Google Scholar 

  7. F. Kabir, M.M.H. Bhuiyan, M.R. Hossain, H. Bashar, M.S. Rahaman, M.S. Manir, S.M. Ullah, S.S. Uddin, M.Z.I. Mollah, R.A. Khan, S. Huque, and M.A. Khan, Improvement of Efficiency of Dye Sensitized Solar Cells by Optimizing the Combination Ratio of Natural Red and Yellow Dyes. Optik 179, 252–258 (2019).

    Article  CAS  Google Scholar 

  8. N.A. Jadhav, P.K. Singh, H.W. Rhee, S.P. Pandey, and B. Bhattacharya, Effect of Structure Texture and Morphology Modulation on Efficiency of Dye Sensitized Solar Cells. Int. J. of Electrochem. Sci. 9, 5377–5388 (2014).

    CAS  Google Scholar 

  9. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, and X. Wang, Effects of Particle Size on the Structure and Photocatalytic Performance by Alkali-treated TiO2. Nanomater. 10, 546 (2020).

    Article  CAS  Google Scholar 

  10. Y.H. Nien, H.H. Chen, H.H. Hsu, M. Rangasamy, G.M. Hu, Z.R. Yong, P.Y. Kuo, J.C. Chou, C.H. Lai, C.C. Ko, and J.X. Chang, Study of how Photoelectrodes Modified by TiO2/Ag Nanofibers in Various Structures Enhance the Efficiency of dye-sensitized Solar Cells under low Illumination. Energies 13, 2248 (2020).

    Article  CAS  Google Scholar 

  11. D. Kabir, T. Forhad, W. Ghann, B. Richards, M.M. Rahman, M.N. Uddin, M.R.J. Rakib, M.H. Shariare, F.I. Chowdhury, M.M. Rabbani, N.M. Bahadur, and J. Uddin, Dyesensitized Solar Cell with Plasmonic Gold Nanoparticles Modified Photoanode, Nano-Struct. Nano-Objects, 26, 100698 (2021).

    Article  CAS  Google Scholar 

  12. F. Saadmim, T. Forhad, A. Sikder, W. Ghann, M.M. Ali, V. Sitther, A.J.S. Ahammad, Md.A. Subhan, and J. Uddin, Enhancing the Performance of Dye Sensitized Solar Cells using Silver Nanoparticles Modified Photoanode. Molecules 25, 4021 (2020).

    Article  CAS  Google Scholar 

  13. S. Mayumi, Y. Ikeguchi, D. Nakane, Y. Ishikawa, Y. Uraoka, and M. Ikeguchi, Effect of Gold Nanoparticle Distribution in TiO2 on the Optical and Electrical Characteristics of Dye-sensitized Solar Cells. Nanoscale Res. Lett. 12, 513 (2017).

    Article  CAS  Google Scholar 

  14. S.H. Han, W.Y. Rho, and B.H. Jun, Au-nanoparticle-Embedded Open-ended Freestanding TiO2 Nanotube Arrays in Dye-sensitized Solar Cells for Better Electron Generation and Electron Transport. ACS Omega 4, 20346–20352 (2019).

    Article  CAS  Google Scholar 

  15. B. Shougaijam, and S.S. Singh, Structural and Optical Analysis of Ag Nanoparticle-assisted and Vertically Aligned TiO2 Nanowires for Potential DSSCs Application. J Mater Sci: Mater Electron 32, 19052–19061 (2021).

    Google Scholar 

  16. L. Meng, and T. Yang, Inclined Substrate Deposition of Nanostructured tio2 thin Films for DSSC Application. Molecules. 26, 1–9 (2021).

    Google Scholar 

  17. H.B. Kim, D.W. Park, J.P. Jeun, S.H. Oh, Y.C. Nho, and P.H. Kang, Effects of Electron Beam Irradiation on the Photo Electrochemical Properties of TiO2 Film for DSSCs. Radiat. Phys. Chem. 81, 954–957 (2012).

    Article  CAS  Google Scholar 

  18. B. Shougaijam, C. Ngangbam, and T.R. Lenka, Plasmon-sensitized Optoelectronic Properties of au Nanoparticle-assisted Vertically Aligned TiO2 Nanowires by GLAD Technique. IEEE T Electron Dev. 64, 1127–1133 (2017).

    Article  CAS  Google Scholar 

  19. P. Shi, X. Li, Q. Zhang, Z. Yi, and J. Luo, Photocatalytic Activity of Self-assembled Porous TiO2 Nano-columns Array Fabricated by Oblique Angle Sputter Deposition. Mater. Res. Express 5, 045018 (2018).

    Article  CAS  Google Scholar 

  20. C. Ghosh, S.M.M. Dhar Dwivedi, A. Ghosh, A. Dalal, and A. Mondal, A novel Ag Nanoparticles/TiO2 Nanowires-based Photodetector and Glucose Concentration Detection. Appl. Phys. A. 125, 810 (2019).

    Article  CAS  Google Scholar 

  21. Y. Zhang, and H. Liu, Nanowires for High-efficiency Low-cost Solar Photovoltaics. Crystals 9, 87 (2019).

    Article  CAS  Google Scholar 

  22. A. Zhang, Z. Guo, Y. Tao, W. Wang, X. Mao, G. Fan, K. Zhou, and S. Qu, Advanced Light-trapping Effect of Thin-film Solar Cell with Dual Photonic Crystals. Nanoscale. Res. Lett. 10, 214 (2015).

    Article  CAS  Google Scholar 

  23. L.G. Garcia, I.G. Valls, M.L. Cantu, A. Barrancoa, and A.R.G. Elipe, Aligned TiO2 Nanocolumnar Layers Prepared by PVD-GLAD for Transparent Dye Sensitized Solar Cells. Energy Environ. Sci. 4, 3426–3435 (2011).

    Article  CAS  Google Scholar 

  24. G.K. Kiema, M.J. Colgan, and M.J. Brett, Dye Sensitized Solar Cells Incorporating Obliquely Deposited Titanium Oxide Layers. Sol. Energy Mater and Sol. Cells 85, 321–331 (2005).

    Article  CAS  Google Scholar 

  25. J. Singh, K. Sahu, S. Choudhary, A. Bisht, and S. Mohapatra, Thermal Annealing Induced Cave in and Formation of Nanoscale Pits in Ag-TiO2 Plasmonic Nanocomposite Thin Film. Ceram. Int. 46, 3275–3281 (2020).

    Article  CAS  Google Scholar 

  26. S. Li, X. Zhu, B. Wang, Y. Qiao, W. Liu, H. Yang, N. Liu, M. Chen, H. Lu, and Y. Yang, Influence of Ag Nanoparticles with Different Sizes and Concentrations Embedded in a TiO2 Compact Layer on the Conversion Efficiency of Perovskite Solar Cells. Nanoscale Res. Lett. 13, 210 (2018).

    Article  CAS  Google Scholar 

  27. P. Chinnamuthu, A. Mondal, N.K. Singh, J.C. Dhar, K.K. Chattopadhyay, and S. Bhattacharya, Band Gap Enhancement of Glancing Angle Deposited TiO2 Nanowire Array. Int. J. Appl. Phys. 112, 054315 (2012).

    Article  CAS  Google Scholar 

  28. X. Wang, O. Ye, H. Li, X. Bai, T.T. Su, T.W. Wang, X.Q. Zhai. Peng, HWu. Yi Huo, C. Liu, Y.Y. Bu, X.H. Ma, Y. Hao, and J.P. Ao, Enhanced UV Emission from Zno on Silver Nanoparticle Arrays by the Surface Plasmon Resonance Effect. Nanoscale Res. Lett. 16, 8 (2021).

    Article  CAS  Google Scholar 

  29. T.H.T. Le, T.T. Bui, H. Van Bui, V.D. Dao, L. Le, and Thi Ngoc, TiO2 Inverse Opals Modified by Ag Nanoparticles: a Synergic Effect of Enhanced Visible-light Absorption and Efficient Charge Separation for Visible-light Photocatalysis. Catalysts. 11, 761 (2021).

    Article  CAS  Google Scholar 

  30. C. Wei, X. Chen, D. Li, H. Su, H. He, and J.F. Dai, Bound Excitons and Free Exciton States in GaSe Thin Slabl. Sci. Rep. 6, 1–6 (2016).

    CAS  Google Scholar 

  31. B. Choudhury, M. Dey, and A. Choudhury, Shallow and Deep Trap Emission and Luminescence Quenching of TiO2 Nanoparticles on Cu Doping. Appl. Nanosci. 4, 499–506 (2014).

    Article  CAS  Google Scholar 

  32. R.V. Nair, P.K. Gayathri, V.S. Gummaluria, P.M.G. Nambissanb, and C. Vijayan, Large Bandgap Narrowing in Rutile TiO2 Aimed Towards Visible Light Applications and its Correlation with Vacancy-type Defects History and Transformation. J. Phys. D. 51, 045107 (2018).

    Article  CAS  Google Scholar 

  33. M.Q. Lokman, S. Shafie, S. Shaban, F. Ahmad, H. Jaafar, R.M. Rosnan, H. Yahaya, and S.S. Abdullah, Enhancing Photocurrent Performance Based on Photoanode Thickness and Surface Plasmon Resonance using Ag-Tio2 Nanocomposites in Dye-Sensitized Solar Cells. Materials 12, 2111 (2019).

    Article  CAS  Google Scholar 

  34. J. Jana, M. Ganguly, and T. Pal, Author Affiliations Enlightening Surface Plasmon Resonance Effect of Metal Nanoparticles for Practical Spectroscopic Application. RSC Adv. 6, 86174–86211 (2016).

    Article  CAS  Google Scholar 

  35. M. Lv, D. Zheng, M. Ye, L. Sun, J. Xiao, W. Guo, and C. Lin, Densely Aligned Rutile TiO2 Nanorod Arrays with High Surface Area for Efficient Dye-sensitized Solar Cells. Nanoscale 4, 5872–5879 (2012).

    Article  CAS  Google Scholar 

  36. S.M. Wang, W.W. Dong, R.H. Tao, Z.H. Deng, J.Z. Shao, and L.H. Hu, Optimization of Single-Crystal Rutile TiO2 Nanorod Arrays Based Dye-Sensitized Solar Cells and their Electron Transport Properties. J. Power Sources. 235, 193–201 (2013).

    Article  CAS  Google Scholar 

  37. W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, and Z.L. Wang, Rectangular Bunched Rutile TiO2 Nanorod Arrays Grown on Carbon Fiber for Dye-sensitized Solar Cells. J. Am. Chem. Soc. 134, 4437–4441 (2012).

    Article  CAS  Google Scholar 

  38. M. Ghaffari, B. Cosar, H.I. Yavuz, M. Ozenbas, and A.K. Okyay, Effect of Au Nano-particles on TiO2 Nanorod Electrode in Dyesensitized Solar Cells. Electrochim. Acta. 76, 446–452 (2012).

    Article  CAS  Google Scholar 

  39. A. Kumar, A.R. Madaria, and C. Zhou, Growth of Aligned Single Crystalline Rutile TiO2 Nanowires on Arbitrary Substrates and Their Application in Dye-sensitized Solar Cells. J. Phys. Chem. C. 114, 7787–7792 (2010).

    Article  CAS  Google Scholar 

  40. A.K. Gupta, P. Srivastava, and L. Bahadur, Improved Performance of Ag-Doped TiO2 Synthesized by Modified sol-gel Method as Photoanode of Dye-sensitized Solar cell. Appl. Phys. A. 122, 724 (2016).

    Article  CAS  Google Scholar 

  41. K.G. Deepa, P. Lekha, and S. Sindhu, Efficiency Enhancement in DSSC Using Metal Nanoparticle: a Size Dependent Study. Sol. Energy 86, 326–330 (2012).

    Article  CAS  Google Scholar 

  42. A.S. Marques, V.A.S. Silva, E.S. Ribeiro, and L.F.B. Malta, Dye-sensitized Solar Cells: Components Screening for Glass Substrate, Counter-electrode. Photoanode and Electrolyte. Mater. Res. 23, e20200168 (2020).

    Article  CAS  Google Scholar 

  43. G. Kawamura, H. Ohmi, W.K. Tan, Z. Lockman, H. Muto, and A. Matsuda, Ag Nanoparticle-Deposited TiO2 Nanotube Arrays for Electrodes of Dye-Sensitized Solar Cells. Nanoscale Res. Lett. 10, 219 (2015).

    Article  CAS  Google Scholar 

  44. S. Solaiyammal, B.G.T. Muniyappan, S.S. Keerthana, P. Nemala, and P. Bhargava, Murugakoothan, Green Synthesis of Ag and the Effect of Ag on the Efficiency of TiO2 Based dye Sensitized Solar Cell. J Mater Sci: Mater Electron 28, 15423–15434 (2017).

    CAS  Google Scholar 

  45. M.N. Mustafa, S. Shafie, M.H. Wahid, and Y. Sulaiman, Preparation of TiO2 Compact Layer by Heat Treatment of Electrospun TiO2 Composite for Dye-sensitized Solar Cells. Thin Solid Films 693, 137699 (2020).

    Article  CAS  Google Scholar 

  46. S. Muduli, O. Game, V. Dhas, K. Vijayamohanan, K.A. Bogle, N. Valanoor, and Satishchandra B. Ogale, TiO2 - Au Plasmonic Nanocomposite for Enhanced Dye-sensitized Solar cell (DSSC) Performance. Solar Energy 86, 5 (2012).

    Article  CAS  Google Scholar 

  47. J. Sun, M. Fang, W. Zhu, and Z. Wu, Cun Li, Ag Nanoparticle-decorated SiO2@TiO2 Hierarchical Microspheres Improve the Efficiency of dye-Sensitized Solar Cells. J Mater Sci: Mater Electron 32, 20104–20114 (2021).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Science and Engineering Research Board (SERB), Govt. of India, for funding this work under file no. ECR/ 2018/000834. The authors would also like to acknowledge the Department of Electronics and Communication Engineering, Manipur Technical University (MTU), for providing research facilities. The authors also acknowledge the Department of Chemistry, NIT Manipur, for providing PL, XRD and EIS characterization, SAIF, NEHU for TEM, NIT Durgapur for SEM and AquaOne Manipur (NFDB) for UV spectroscopy measurement facilitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biraj Shougaijam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shougaijam, B., Singh, S.S. Optimization of Dye-Sensitized Solar Cell Efficiency by Controlling the Size of Ag Nanoparticle-Assisted TiO2 Nanowire Photoanodes Using the GLAD Technique. J. Electron. Mater. 51, 6029–6039 (2022). https://doi.org/10.1007/s11664-022-09852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09852-9

Keywords

Navigation