Skip to main content
Log in

Estimation of Thermomechanical Fatigue Lifetime of Ball Grid Solder Joints in Electronic Devices Using a Machine Learning Approach

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Rapid and accurate reliability assessment of electronic devices is a key issue in device design. In this work, a machine learning algorithm was developed to estimate the fatigue lifetime of ball grid solder joints under thermomechanical loading cycles. Using this novel approach, an extremely quick estimation of the thermomechanical fatigue lifetime of the ball grid solder joints was achieved. Several finite element simulations were performed to investigate the creep behavior of the solder joints under different thermal loading conditions. The collected data were then inserted into the proposed machine learning algorithm. The results demonstrated that the model can accurately predict the lifetime of the ball grid solder joints in the shortest possible time. It was also revealed that thermal cycling specifications play a crucial role in interconnection failure. The effects of the solder chemical composition and the volume on the activation of the fatigue and creep damage in the solder joints were determined, which make this novel approach attractive for reliability assessment in the preliminary stage of system design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Wang, S. Xue, P. Zhang, Z. Wang, and P. Zhai, J. Mater. Sci. Mater. Electron. 31, 1421 (2020).

    Article  CAS  Google Scholar 

  2. Y. Huang, H. Deng, Y. Luo, F. Xiao, B. Liu, and X. Tang, IEEE Trans. Ind. Electron. 68, 3033–3043 (2020).

    Article  Google Scholar 

  3. M. Jayabalan, A.F. Siddiqi, O. Kuzichkin, A.Y. Krasnopevtsev, and M. Salmani, Mater. Res. Express 6, 76305 (2019).

    Article  CAS  Google Scholar 

  4. R. Elakkiya, G. Kavithaa, V. Samavatian, K. Alhaifi, A. Kokabi, and H. Moayedi, IEEE Trans. Power Electron 35, 6397–6404 (2019).

    Google Scholar 

  5. A. Surendar, L.G. Akhmetov, L.K. Ilyashenko, A. Maseleno, and V. Samavatian, IEEE Trans Components Packag. Manuf. Technol. 8, 1769 (2018).

    Article  CAS  Google Scholar 

  6. K. Sathish, K. O. R., S. A. Faisal, P. Inna, and K. A. Yu, Solder. Surf. Mt. Technol. ahead-of-p, (2020).

  7. A. Raj, T. Sanders, S. Sridhar, J.L. Evans, M.J. Bozack, W.R. Johnson, and D.M. Carpenter, IEEE Trans. Components, Packag. Manuf. Technol. 9, 1082–1093 (2019).

    Article  CAS  Google Scholar 

  8. M. M. Basit, M. Motalab, J. C. Suhling, Z. Hai, J. Evans, M. J. Bozack, and P. Lall, in 2015 IEEE 65th Electron. Components Technol. Conf. (IEEE, 2015), pp. 106–117.

  9. Y.K. Kim, S. Lee, D. Hwang, and S. Jang, Microelectron. Reliab. 109, 113654 (2020).

    Article  Google Scholar 

  10. E. Suhir, R. Ghaffarian, and S. Yi, J. Mater. Sci. Mater. Electron. 28, 3585 (2017).

    Article  CAS  Google Scholar 

  11. J. Li, J. Karppinen, T. Laurila, and J.K. Kivilahti, IEEE Trans. Components Packag. Technol. 32, 302 (2009).

    Article  CAS  Google Scholar 

  12. F. J. Akkara, C. Zhao, R. Athamenh, S. Su, M. Abueed, S. Hamasha, J. Suhling, and D. P. Lall, in 2018 17th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. (2018), pp. 1374–1380.

  13. M.T. Zarmai, N.N. Ekere, C.F. Oduoza, and E.H. Amalu, Robot. Comput. Integr. Manuf. 47, 37 (2017).

    Article  Google Scholar 

  14. M. Kuczynska, N. Schafet, U. Becker, B. Métais, A. Kabakchiev, P. Buhl, and S. Weihe, Microelectron. Reliab. 74, 155 (2017).

    Article  Google Scholar 

  15. A. Kokabi, M. Samavatian, R. Hojati-Najafabadi, L.K. Ilyashenko, and V. Samavatian, Mech. Adv. Mater. Struct. 6, 106302 (2018).

    Google Scholar 

  16. V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Sci. Rep. 10, 14821 (2020).

    Article  CAS  Google Scholar 

  17. W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu, and J.F. Guan, J. Alloys Compd. 414, 123 (2006).

    Article  CAS  Google Scholar 

  18. H. Tsukamoto, T. Nishimura, S. Suenaga, S.D. McDonald, K.W. Sweatman, and K. Nogita, Microelectron. Reliab. 51, 657 (2011).

    Article  CAS  Google Scholar 

  19. C.-L. Kao and T.-C. Chen, Microelectron. Reliab. 82, 204 (2018).

    Article  CAS  Google Scholar 

  20. X. Long, X. He, and Y. Yao, J. Mater. Sci. 52, 6120 (2017).

    Article  CAS  Google Scholar 

  21. X. Long, Z. Chen, W. Wang, Y. Fu, and Y. Wu, J. Mater. Sci. 55, 10811 (2020).

    Article  CAS  Google Scholar 

  22. G. Siroky, E. Kraker, J. Magnien, D. Melinc, D. Kieslinger, E. Kozeschnik, and W. Ecker, Microelectron. Reliab. 119, 114066 (2021).

    Article  CAS  Google Scholar 

  23. W. Wang, Z. Chen, S. Wang, and X. Long, Microelectron. Reliab. 107, 113616 (2020).

    Article  CAS  Google Scholar 

  24. G. Ren, M. N. Collins, J. Punch, E. Dalton, and R. Coyle, in edited by A. S. H. Makhlouf and M. Aliofkhazraei (Butterworth-Heinemann, 2020), pp. 107–151.

  25. V. Samavatian, H. Imaneini, and Y. Avenas, IEEE Trans. Power Electron. 35, 4024–4032 (2019).

    Article  Google Scholar 

  26. G. Ren and M. Collins, Solder. Surf. Mt. Technol. ahead-of-p, (2020).

  27. J. Schmidhuber, Neural Netw. 61, 85 (2015).

    Article  Google Scholar 

  28. I. Labed, D. Labed, and I.E.T. Gener, Transm. Distrib. 13, 5058 (2019).

    Article  Google Scholar 

  29. G. Yin, F.J.I. Alazzawi, S. Mironov, F. Reegu, A.S. El-Shafay, M.L. Rahman, and H.C. Nguyen, Arab. J. Chem. 15, 103612 (2022).

    Article  CAS  Google Scholar 

  30. B. Kumaraswamy, in edited by D. Binu and B. R. B. T.-A. I. in D. M. Rajakumar (Academic Press, 2021), pp. 109–131.

  31. G. Yin, F.J.I. Alazzawi, D. Bokov, H.A. Marhoon, A.S. El-Shafay, M.L. Rahman, and H.C. Nguyen, Arab. J. Chem. 15, 103608 (2022).

    Article  CAS  Google Scholar 

  32. A. Surendar, K.H. Kishore, M. Kavitha, A.Z. Ibatova, and V. Samavatian, IEEE Trans. Device Mater. Reliab. 18, 606 (2018).

    Article  CAS  Google Scholar 

  33. R. Elakkiya, G. Kavithaa, V. Samavatian, K. Alhaifi, A. Kokabi, and H. Moayedi, IEEE Trans. Power Electr. 35, 6397–6404 (2019).

    Google Scholar 

  34. V. Samavatian, H. Iman-Eini, Y. Avenas, and M. Samavatian, IEEE Trans. Power Electron. 35, 8956 (2020).

    Article  Google Scholar 

  35. T.-C. Chen, F. J. I. Alazzawi, A. A. Salameh, A. Al Ayub Ahmed, I. Pustokhina, A. Surendar, and A. Y. Oudah, Mech. Adv. Mater. Struct. 1 (2021).

  36. D. Yu, A. Al-Yafawi, T.T. Nguyen, S. Park, and S. Chung, Microelectron. Reliab. 51, 649 (2011).

    Article  CAS  Google Scholar 

  37. M. Ekpu, R. Bhatti, M.I. Okereke, S. Mallik, and K. Otiaba, Microelectron. Reliab. 54, 239 (2014).

    Article  CAS  Google Scholar 

  38. J. Thambi, U. Tetzlaff, A. Schiessl, K.-D. Lang, and M. Waltz, Microelectron. Reliab. 106, 113560 (2020).

    Article  CAS  Google Scholar 

  39. S. Hai, S.-H. Oh, and H.-S. Yu, Eng. Fail. Anal. 113, 104558 (2020).

    Article  CAS  Google Scholar 

  40. W.A. Siswanto, M. Arun, I.V. Krasnopevtseva, A. Surendar, and A. Maseleno, J. Manuf. Process. 54, 221 (2020).

    Article  Google Scholar 

  41. P. Xu, M. Rauer, M. Kaloudis, and J. Franke, in 2016 6th Electron. Syst. Technol. Conf. (2016), pp. 1–5.

  42. C. Durand, M. Klingler, M. Bigerelle, and D. Coutellier, Microelectron. Reliab. 66, 122 (2016).

    Article  CAS  Google Scholar 

  43. E.H. Amalu and N.N. Ekere, J. Manuf. Syst. 39, 9 (2016).

    Article  Google Scholar 

  44. M. Samavatian, V. Samavatian, M. Moayeri, and H. Babaei, J. Manuf. Process. 32, 57 (2018).

    Article  Google Scholar 

  45. A. Surendar, V. Samavatian, A. Maseleno, A.Z. Ibatova, and M. Samavatian, J. Mater. Sci. Mater. Electr. 29, 15249–15258 (2018).

    Article  CAS  Google Scholar 

  46. M.T. Zarmai, N.N. Ekere, C.F. Oduoza, and E.H. Amalu, Microelectron. Reliab. 59, 117 (2016).

    Article  CAS  Google Scholar 

  47. A. Syed, in 2004 Proceedings. 54th Electron. Components Technol. Conf. (IEEE Cat. No.04CH37546) (2004), pp. 737-746 Vol.1.

  48. V. Samavatian, A Systematic Approach to Reliability Assessment of DC-DC Power Electronic Converters, University of Tehran and Université Grenoble Alpes, 2019.

  49. M. Samavatian, L.K. Ilyashenko, A. Surendar, A. Maseleno, and V. Samavatian, J. Electr. Mater 47, 6781–6790 (2018).

    Article  CAS  Google Scholar 

  50. Z. Tang and P.A. Fishwick, ORSA J. Comput. 5, 374 (1993).

    Article  Google Scholar 

  51. D. Zhang, X. Han, and C. Deng, CSEE J. Power Energy Syst. 4, 362 (2018).

    Article  Google Scholar 

  52. I. Kopal, M. Harničárová, J. Valíček, J. Krmela, and O. Lukáč, Polymers (Basel). 11, 1074 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzu-Chia Chen or Aravindhan Surendar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TC., Opulencia, M.J.C., Majdi, H.S. et al. Estimation of Thermomechanical Fatigue Lifetime of Ball Grid Solder Joints in Electronic Devices Using a Machine Learning Approach. J. Electron. Mater. 51, 3495–3503 (2022). https://doi.org/10.1007/s11664-022-09635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09635-2

Keywords

Navigation