Skip to main content
Log in

Effect of extreme thermal shocking on the reliability of Sn50Pb49Sb1/Cu solder joint

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cosmic extreme temperature is deemed to be an enormous problem for the electronic devices and solder joints of on-orbit satellite. In this paper, an extreme thermal shocking test from 77 to 423 K was carried out to partly simulate the space temperature environment. The extreme thermal shocking effect on the microstructure, shear force and fracture behavior of Sn50Pb49Sb1/Cu solder joint was investigated to try to clarify the reliability evolution of solder joint. It was found that after the thermal shocking, Cu6Sn5 layer thickened significantly with the formation of micro-cracks. The columnar shape of Cu6Sn5 layer in as-soldered joint was changed to plane shape due to its excessive growth. The Cu3Sn layer formed and coarsened during the thermal shocking process, but no defects were observed. Owing to the growing interfacial layers and prolonging cracks, the shear force of solder joint was reduced with the increasing shock cycles. The fracture of solder joint was also transformed from solder-controlled mode to a mixed mode of solder and intermetallic compound, giving a different fracture location and lower ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Voosen, Science 363, 439 (2019)

    CAS  Google Scholar 

  2. E. Venkatapathy, B. Laub, G.J. Hartman, J.O. Arnold, M.J. Wright, G.A. Allen, Adv. Space Res. 44, 138 (2009)

    Article  CAS  Google Scholar 

  3. G.L. Bennett, Energy Convers. Manage. 49, 382 (2008)

    Article  Google Scholar 

  4. J. Wang, H. Nishikawa, Microelectron. Reliab. 54, 1583 (2014)

    Article  CAS  Google Scholar 

  5. J. Wu, S. Xue, J. Wang, J. Wang, S. Liu, J. Mater. Sci.: Mater. Electron. 28, 10230 (2017)

    CAS  Google Scholar 

  6. S.M.L. Nai, J. Wei, M. Gupta, J. Alloys Compd. 473, 100 (2009)

    Article  CAS  Google Scholar 

  7. Y. Xia, X. Xie, J. Alloys Compd. 454, 174 (2008)

    Article  CAS  Google Scholar 

  8. J. Wang, S. Xue, Z. Lv, L. Wen, S. Liu, J. Mater. Sci.: Mater. Electron. 30, 4990 (2019)

    CAS  Google Scholar 

  9. R. Tian, C. Hang, Y. Tian, J. Feng, J. Alloys Compd. 777, 463 (2019)

    Article  CAS  Google Scholar 

  10. R. Tian, C. Hang, Y. Tian, L. Zhao, Mater. Sci. Eng., A 709, 125 (2018)

    Article  CAS  Google Scholar 

  11. Y. Yao, X. Yu, J. Mater. Sci.: Mater. Electron. 30, 867 (2019)

    CAS  Google Scholar 

  12. G. Zeng, S.D. McDonald, Q.F. Gu, K. Sweatman, K. Nogita, Philos. Mag. Lett. 94, 53 (2014)

    Article  CAS  Google Scholar 

  13. A.A. El-Daly, A.E. Hammad, A. Fawzy, A.D. Nasrallh, Mater. Des. 43, 40 (2013)

    Article  CAS  Google Scholar 

  14. Y. Zhong, W. Liu, C. Wang, X. Zhao, J.F.J.M. Caers, Mater. Sci. Eng., A 652, 264 (2016)

    Article  CAS  Google Scholar 

  15. H. Ye, S. Xue, J. Luo, Y. Li, Mater. Des. 46, 816 (2013)

    Article  CAS  Google Scholar 

  16. D.-G. Kim, J.-W. Kim, J.-G. Lee, H. Mori, D.J. Quesnel, S.-B. Jung, J. Alloys Compd. 395, 80 (2005)

    Article  CAS  Google Scholar 

  17. J.-W. Yoon, H.-S. Chun, S.-B. Jung, Mater. Sci. Eng., A 483–484, 731 (2008)

    Article  Google Scholar 

  18. K.N. Tu, K. Zeng, Mater. Sci. Eng., R 34, 1 (2001)

    Article  Google Scholar 

  19. H. Wang, S. Xue, J. Wang, J. Mater. Sci.: Mater. Electron. 28, 8246 (2017)

    CAS  Google Scholar 

  20. H.L.J. Pang, K.H. Tan, X.Q. Shi, Z.P. Wang, Mater. Sci. Eng., A 307, 42 (2001)

    Article  Google Scholar 

  21. Y. Qi, R. Lam, H.R. Ghorbani, P. Snugovsky, J.K. Spelt, Microelectron. Reliab. 46, 574 (2006)

    Article  CAS  Google Scholar 

  22. B.J. Lee, N.M. Hwang, H.M. Lee, Acta Mater. 45, 1867 (1997)

    Article  CAS  Google Scholar 

  23. J.O. Suh, K.N. Tu, G.V. Lutsenko, A.M. Gusak, Acta Mater. 56, 1075 (2008)

    Article  CAS  Google Scholar 

  24. S. He, R. Gao, J. Li, Y.-A. Shen, H. Nishikawa, Mater. Chem. Phys. 239, 122309 (2020)

    Article  CAS  Google Scholar 

  25. Z.L. Li, L.X. Cheng, G.Y. Li, J.H. Huang, Y. Tang, J. Alloys Compd. 697, 104 (2017)

    Article  CAS  Google Scholar 

  26. J. Gong, C. Liu, P.P. Conway, V.V. Silberschmidt, Acta Mater. 56, 4291 (2008)

    Article  CAS  Google Scholar 

  27. S.F. Choudhury, L. Ladani, J. Electron. Mater. 43, 996 (2014)

    Article  CAS  Google Scholar 

  28. D.T. Chu, Y.-C. Chu, J.-A. Lin, Y.-T. Chen, C.-C. Wang, Y.-F. Song, C.-C. Chiang, C. Chen, K.N. Tu, Microelectron. Reliab. 79, 32 (2017)

    Article  CAS  Google Scholar 

  29. J. Wang, S. Xue, P. Zhang, P. Zhai, Y. Tao, J. Mater. Sci.: Mater. Electron. 30, 9065 (2019)

    CAS  Google Scholar 

  30. L. Yang, X. Shi, S. Quan, Mater. Res. Express 6, 076518 (2019)

    Article  CAS  Google Scholar 

  31. M. Collin, D. Rowcliffe, Acta Mater. 48, 1655 (2000)

    Article  CAS  Google Scholar 

  32. O. Minho, G. Vakanas, N. Moelans, M. Kajihara, W. Zhang, Microelectron. Eng. 120, 133 (2014)

    Article  Google Scholar 

  33. L. Xu, J.H.L. Pang, F. Che, J. Electron. Mater. 37, 880 (2008)

    Article  CAS  Google Scholar 

  34. X. Deng, R.S. Sidhu, P. Johnson, N. Chawla, Metall. Mater. Trans. A 36, 55 (2005)

    Article  Google Scholar 

  35. P. Liu, P. Yao, J. Liu, J. Alloys Compd. 486, 474 (2009)

    Article  CAS  Google Scholar 

  36. X. Hu, Y. Li, Y. Liu, Y. Liu, Z. Min, Microelectron. Reliab. 54, 1575 (2014)

    Article  Google Scholar 

  37. K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloys Compd. 455, 148 (2008)

    Article  CAS  Google Scholar 

  38. K.E. Yazzie, H.E. Fei, H. Jiang, N. Chawla, Acta Mater. 60, 4336 (2012)

    Article  CAS  Google Scholar 

  39. G.-Y. Jang, J.-W. Lee, J.-G. Duh, J. Electron. Mater. 33, 1103 (2004)

    Article  CAS  Google Scholar 

  40. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Mater. Sci. Eng., A 673, 167 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 51675269); Nanjing University of Aeronautics and Astronautics PhD short-term visiting scholar project (Grant No. 190908DF06) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xue, S., Zhang, P. et al. Effect of extreme thermal shocking on the reliability of Sn50Pb49Sb1/Cu solder joint. J Mater Sci: Mater Electron 31, 1421–1429 (2020). https://doi.org/10.1007/s10854-019-02656-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02656-4

Navigation