Skip to main content
Log in

Tunable Electronic Properties of MoS2/SiC Heterostructures: A First-Principles Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using first-principle calculations based on density functional theory, we have systematically investigated the structural and electronic properties of hybrid systems composed of monolayer MoS2 and SiC. The systems include a MoS2/SiC superlattice, MoS2-SiC hetero-bilayer, and a hetero-trilayer. Among all the superlattices and hetero-bilayers considered, the AA-2 type (Mo atoms are aligned on top of C atoms, S atoms are aligned on top of Si atoms) with type-II band alignment is the most stable model. Strain-induced tunable bandgaps were found in MoS2/SiC hetero-bilayer systems. In addition, the tunable bandgap could also be realized by constructing a hetero-trilayer structure. The tunable band structures make MoS2/SiC hybrid systems promising candidates for future optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. C. Jin, F. Lin, K. Suenaga, and S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009).

    Article  CAS  Google Scholar 

  3. Z. Ma, X. Zhao, Q. Tang, and Z. Zhou, Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane. Int. J. Hydrog. Energy 39, 5037 (2014).

    Article  CAS  Google Scholar 

  4. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033 (2014).

    Article  CAS  Google Scholar 

  5. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 (2011).

    Article  CAS  Google Scholar 

  6. S.S. Lin, Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951 (2012).

    Article  CAS  Google Scholar 

  7. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Phys. B Condens. Matter 406, 2254 (2011).

    Article  CAS  Google Scholar 

  8. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang, Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13, 15546 (2011).

    Article  CAS  Google Scholar 

  9. K.F. Mak and J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216 (2016).

    Article  CAS  Google Scholar 

  10. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015).

    Article  CAS  Google Scholar 

  11. W. Bao, X. Cai, D. Kim, K. Sridhara, and M.S. Fuhrer, High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).

    Article  CAS  Google Scholar 

  12. T. Eknapakul, P.D.C. King, M. Asakawa, P. Buaphet, R.-H. He, S.-K. Mo, H. Takagi, K.M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer. Nano Lett. 14, 1312 (2014).

    Article  CAS  Google Scholar 

  13. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136 (2012).

    Article  CAS  Google Scholar 

  15. Z. Shi, Z. Zhang, A. Kutana, and B.I. Yakobson, Predicting two-dimensional silicon carbide monolayers. ACS Nano 9, 9802 (2015).

    Article  CAS  Google Scholar 

  16. X. Zhu, S. Huang, Q. Yu, Y. She, J. Yang, G. Zhou, Q. Li, X. She, J. Deng, H. Li, and H. Xu, In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B Environ. 269, 118760 (2020).

    Article  CAS  Google Scholar 

  17. S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chemie - Int. Ed. 54, 3112 (2015).

    Article  CAS  Google Scholar 

  18. U. Sundararaju, M.A.S.M. Haniff, P.J. Ker, and P.S. Menon, MoS2/h-BN/Graphene heterostructure and plasmonic effect for self-powering photodetector: a review. Materials 14, 1672 (2021).

    Article  CAS  Google Scholar 

  19. D.-Y. Lin, B.-C. Guo, Z.-Y. Dai, C.-F. Lin, and H.-P. Hsu, PbI2 single crystal growth and its optical property study. Curr. Comput.-Aided Drug Des. 9, 589 (2019).

    CAS  Google Scholar 

  20. Y. Yao, J. Cao, W. Yin, L. Yang, and X. Wei, Two-dimensional ZnSe/BiOX vertical heterostructure as a promising photocatalyst for water splitting: a first-principles study. J. Phys. D. Appl. Phys. 53, 055108 (2019).

    Article  CAS  Google Scholar 

  21. X. Liu, Y. Zhang, H. Feng, Y. Ning, Y. Shi, X. Wang, and F. Yang, Manipulating optical absorption of indium selenide using plasmonic nanoparticles. ACS Omega 5, 3000 (2020).

    Article  CAS  Google Scholar 

  22. N. Huo, J. Kang, Z. Wei, S.S. Li, J. Li, and S.H. Wei, Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025 (2014).

    Article  CAS  Google Scholar 

  23. O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta I Morral, A. Radenovic, and A. Kis, Light generation and harvesting in a van der Waals heterostructure. ACS Nano 8, 3042 (2014).

    Article  CAS  Google Scholar 

  24. T. Roy, M. Tosun, X. Cao, H. Fang, D.H. Lien, P. Zhao, Y.Z. Chen, Y.L. Chueh, J. Guo, and A. Javey, Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071 (2015).

    Article  CAS  Google Scholar 

  25. L. Xu, W.Q. Huang, W. Hu, K. Yang, B.X. Zhou, A. Pan, and G.F. Huang, Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: enhanced charge transfer and optical absorption, and electric-field tunable Dirac point and band gap. Chem. Mater. 29, 5504 (2017).

    Article  CAS  Google Scholar 

  26. S. Wang, H. Tian, C. Ren, J. Yu, and M. Sun, Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep. 8, 12009 (2018).

    Article  CAS  Google Scholar 

  27. N. Lu, H. Guo, L. Wang, X. Wu, and X.C. Zeng, Van der Waals trilayers and superlattices: modification of electronic structures of MoS2 by intercalation. Nanoscale 6, 4566 (2014).

    Article  CAS  Google Scholar 

  28. J. Liao, B. Sa, J. Zhou, R. Ahuja, and Z. Sun, Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructures. J. Phys. Chem. C 118, 17594 (2014).

    Article  CAS  Google Scholar 

  29. X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682 (2014).

    Article  CAS  Google Scholar 

  30. S.-Y. Xie, X.-B. Li, W.Q. Tian, N.-K. Chen, X.-L. Zhang, Y. Wang, S. Zhang, and H.-B. Sun, First-principles calculations of a robust two-dimensional boron honeycomb sandwiching a triangular molybdenum layer. Phys. Rev. B 90, 035447 (2014).

    Article  CAS  Google Scholar 

  31. R. Bose, G. Manna, S. Jana, and N. Pradhan, Ag2S-AgInS2: p-n junction heteronanostructures with quasi type-II band alignment. Chem. Commun. 50, 3074 (2014).

    Article  CAS  Google Scholar 

  32. H.-P. Komsa, and A.V. Krasheninnikov, Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 88, 085318 (2013).

    Article  CAS  Google Scholar 

  33. H. Gao, C. Wang, Z. Yang, and Y. Zhang, 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Compos. Sci. Technol. 213, 108896 (2021).

    Article  CAS  Google Scholar 

  34. Y. Zhang, M. Qiu, Y. Yu, B. Wen, and L. Cheng, A Novel Polyaniline-coated bagasse fiber composite with core-shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9, 809 (2017).

    Article  CAS  Google Scholar 

  35. Y. Zhang, T. Pan, and Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389, 124433 (2020).

    Article  CAS  Google Scholar 

  36. L. Min, X.Y.E, and S.Y. Xi, Tunable band gap of MoS2-SiC van der Waals heterostructures under normal strain and an external electric field. AIP Adv. 7, 015116 (2017).

  37. Z. Yin, X. Zhang, Y. Cai, J. Chen, J.I. Wong, Y.-Y. Tay, J. Chai, J. Wu, Z. Zeng, B. Zheng, H.Y. Yang, and H. Zhang, Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. Angew. Chem. 126, 12768 (2014).

    Article  Google Scholar 

  38. Y. Yoon, K. Ganapathi, and S. Salahuddin, How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768 (2011).

    Article  CAS  Google Scholar 

  39. Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, and H. Zhang, Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994 (2012).

    Article  CAS  Google Scholar 

  40. M. Sharma, P. Jamdagni, A. Kumar, and P.K. Ahluwalia, Electronic, dielectric and mechanical properties of MoS2/SiC hybrid bilayer: a first principle study. Phys. E 71, 49 (2015).

    Article  CAS  Google Scholar 

  41. Y. Xiao, L. Min, X. Liu, W. Liu, U. Younis, T. Peng, X. Kang, X. Wu, S. Ding, and D.W. Zhang, Facile integration of MoS2/SiC photodetector by direct chemical vapor deposition. Nanophotonics 9, 3035 (2020).

    Article  CAS  Google Scholar 

  42. E.W. Lee II., L. Ma, D.N. Nath, C.H. Lee, A. Arehart, Y. Wu, and S. Rajan, Growth and electrical characterization of two-dimensional layered MoS2/SiC etherojunctions. Appl. Phys. Lett. 105, 203504 (2014).

    Article  CAS  Google Scholar 

  43. M. Luo, Y.E. Xu, and Y.X. Song, Strain-induced tunable magnetic interaction in (Mo, Co)S2/(Si, Co)C heterostructure. J. Supercond. Nov. Magn. 31, 597 (2018).

    Article  CAS  Google Scholar 

  44. V. Kumar, R.K. Gautam, and R. Tyagi, Tribological behavior of Al-based self-lubricating composites. Compos. Interfaces 23, 481 (2016).

    Article  CAS  Google Scholar 

  45. Y. Jiao, L. Zhou, F. Ma, G. Gao, L. Kou, J. Bell, S. Sanvito, and A. Du, Predicting single-layer technetium dichalcogenides (TcX2, X = S, Se) with promising applications in photovoltaics and photocatalysis. ACS Appl. Mater. Interfaces 8, 5385 (2016).

    Article  CAS  Google Scholar 

  46. H. Behera and G. Mukhopadhyay, Strain-tunable band gap in graphene/h-BN hetero-bilayer. J. Phys. Chem. Solids 73, 818 (2012).

    Article  CAS  Google Scholar 

  47. Z. Guan, C.S. Lian, S. Hu, S. Ni, J. Li, and W. Duan, Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der Waals heterostructure as photovoltaic material. J. Phys. Chem. C 121, 3654 (2017).

    Article  CAS  Google Scholar 

  48. A.J. Lu, R.Q. Zhang, and S.T. Lee, Stress-induced band gap tuning in <112> silicon nanowires. Appl. Phys. Lett. 91, 263107 (2007).

    Article  CAS  Google Scholar 

  49. C. Zhang, A. De Sarkar, and R.-Q. Zhang, Strain induced band dispersion engineering in Si nanosheets. J. Phys. Chem. C 115, 23682 (2011).

    Article  CAS  Google Scholar 

  50. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  51. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  52. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  53. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  54. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  55. F. Tran, and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  56. J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  57. R. Ibragimova, M. Ganchenkova, S. Karazhanov, and E.S. Marstein, First-principles study of SnS electronic properties using LDA, PBE and HSE06 functionals. Philos. Mag. 98, 710 (2018).

    Article  CAS  Google Scholar 

  58. R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. De Groot, and A. Wold, Electronic structure of MoSe2, MoS2, and WSe2. I. band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195 (1987).

    Article  CAS  Google Scholar 

  59. M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766 (2013).

    Article  CAS  Google Scholar 

  60. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009).

    Article  CAS  Google Scholar 

  61. J. Wang, Z. Guan, J. Huang, Q. Li, and J. Yang, Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite. J. Mater. Chem. A 2, 7960 (2014).

    Article  CAS  Google Scholar 

  62. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  63. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).

    Article  CAS  Google Scholar 

  64. H.L. Zhuang, A.K. Singh, and R.G. Hennig, Computational discovery of single-layer III-V materials. Phys. Rev. B 87, 165415 (2013).

    Article  CAS  Google Scholar 

  65. K.W. Lee and C.E. Lee, Quantum valley hall effect in wide-gap semiconductor SiC monolayer. Sci. Rep. 10, 5044 (2020).

    Article  CAS  Google Scholar 

  66. E. Bekaroglu, M. Topsakal, S. Cahangirov, and S. Ciraci, First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 81, 075433 (2010).

    Article  CAS  Google Scholar 

  67. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article  CAS  Google Scholar 

  68. T.-Y. Lü, X.-X. Liao, H.-Q. Wang, and J.-C. Zheng, Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study. J. Mater. Chem. 22, 10062 (2012).

    Article  CAS  Google Scholar 

  69. J. Li, Z. Shan, and E. Ma, Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108 (2014).

    Article  CAS  Google Scholar 

  70. C.P. Sujith, S. Joseph, T. Mathew, and V. Mathew, First-principles investigation of structural, electronic and optical properties of quasi-one-dimensional barium cadmium chalcogenides Ba2CdX3 (X = S, Se, Te) using HSE06 and GGA-PBE functionals. J. Phys. Chem. Solids 161, 110488 (2022).

    Article  CAS  Google Scholar 

  71. M. Ramzan, Y. Li, and R. Ahuja, Electronic structure, mechanical and optical properties of In 2O3 with hybrid density functional (HSE06). Solid State Commun. 172, 37 (2013).

    Article  CAS  Google Scholar 

  72. R. Pawar and A.A. Sangolkar, Density functional theory based HSE06 calculations to probe the effects of defect on electronic properties of monolayer TMDCs. Comput. Theor. Chem. 1205, 113445 (2021).

    Article  CAS  Google Scholar 

  73. F. Zhu, C.-L. Ma, B. Gao, J.-J. Kuai, J.-Y. Zhang, and X.-H. Zhang, Strain-modulated electrical and optical bandgaps of tetragonal WO3: An HSE06 hybrid functional calculation. AIP Adv. 10, 095202 (2020).

    Article  CAS  Google Scholar 

  74. C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, Z. Wei, J. Li, and Y. Jia, Type-I transition metal dichalcogenides lateral homojunctions: Layer thickness and external electric field effects. Small 14, 1800365 (2018).

    Article  CAS  Google Scholar 

  75. M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785 (2014).

    Article  CAS  Google Scholar 

  76. H. Li, Y. Cui, T. Wang, and H. Luo, The band alignments modulation of g–MoTe2 /WTe2 van der Waals heterostructures. Appl. Phys. A Mater. 125, 147 (2019).

    Article  CAS  Google Scholar 

  77. J. Li, H. Duan, B. Zeng, Q. Jing, B. Cao, F. Chen, and M. Long, Strain-induced band structure modulation in hexagonal boron phosphide/blue phosphorene VdW heterostructure. J. Phys. Chem. C 122, 26120 (2018).

    Article  CAS  Google Scholar 

  78. H.V. Phuc, N.N. Hieu, B.D. Hoi, L.T.T. Phuong, and C.V. Nguyen, First Principle study on the electronic properties and schottky contact of graphene adsorbed on mos2 monolayer under applied out-plane strain. Surf. Sci. 668, 23 (2018).

    Article  CAS  Google Scholar 

  79. J. Yun, Y. Zhang, Y. Ren, M. Xu, J. Yan, W. Zhao, and Z. Zhang, Tunable band gap of graphyne-based homo- and hetero-structures by stacking sequences, strain and electric field. Phys. Chem. Chem. Phys. 20, 26934 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, X., Meng, D. et al. Tunable Electronic Properties of MoS2/SiC Heterostructures: A First-Principles Study. J. Electron. Mater. 51, 3714–3726 (2022). https://doi.org/10.1007/s11664-022-09613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09613-8

Keywords

Navigation