Skip to main content
Log in

Investigation of Structural, Morphological and Elastic Properties of Ni-Zn Ferrite Grown with an Oxalate Precursor

  • Topical Collection: Synthesis and Advanced Characterization of Magnetic Oxides
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report structural, morphological and elastic properties of NiXZn1-XFe2O4 (x = 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.40) ferrimagnetic oxides prepared using oxalate chemistry. The Rietveld refinement of the X-ray diffraction patterns confirm the formation of spinel cubic structure. The experimental and theoretical lattice constant is found to decrease with increasing Ni2+ content. The FTIR spectra exhibit two main fundamental absorption bands, one for the tetrahedral site around 575 to 580 cm-1 and the other for the octahedral site around 411–413 cm-1. The magnitude of elastic moduli is found to be independent with increasing Ni2+ content. The morphological analysis showed the formation of small and homogeneous particles, which is possible using an oxalate precursor. The elemental analysis confirmed the presence of Ni, Zn, Fe, and O as per their stoichiometric amounts. The structural, morphological and elastic properties are described with an interplay of oxalate precursor synthesis route of the ferrite development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Cheng, J. Tian, J. Lin, S. Wang, S. Xie, Y. Pei, S. Yan, M. Qiao, H. Xu, and B. Zong, Potassium-promoted magnesium ferrite on 3D porous graphene as highly efficient catalyst for CO hydrogenation to lower olefins. J. Catal. 374, 24 (2019).

    Article  CAS  Google Scholar 

  2. P.J. Jessy, V. Bambole, R.R. Deshmukh, and N. Patel, Reduced power consumption in nickel zinc ferrite nanoparticles doped blue phase chiral nematic liquid crystal devices. J. Mol. Liq. 281, 480 (2019).

    Article  CAS  Google Scholar 

  3. S.Y. Srinivasan, K.M. Paknikar, D. Bodas, and V. Gajbhiye, Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine 13, 10 (2018).

    Article  Google Scholar 

  4. S. Chakma, G. K. Dinesh, S. Chakraborty, and V. S. Moholkar, Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment, in ed. by A.A. Inamuddin, E. Lichtfouse, Nanophotocatalysis and Environmental Applications. Environmental Chemistry for a Sustainable World, vol 30 (Springer, 2020), p. 171-194.

  5. M. Tahir Farid, I. Ahmad, M. Kanwal, G. Murtaza, M. Hussain, S.A. Khan, and I. Ali, Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J. Electron. Mater. 46, 1826 (2017).

    Article  Google Scholar 

  6. M. N. Akhtar, M. A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, and G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421 (1), 260 (2017)

  7. S.P. Dalawai, T.J. Shinde, A.B. Gadkari, and P.N. Vasambekar, Influence of Ni2+ and Sn4+ substitution on gas sensing behaviour of zinc ferrite thick films. J Solid State Electrochem 20, 2363 (2016).

    Article  CAS  Google Scholar 

  8. N. Ikramullah, F. Ali, Z. Sheikh, M. Bilal, and I. Ahmad, Photocatalytic performance of zinc ferrite magnetic nanostructures for efficient eriochrome black-T degradation from the aqueous environment under unfiltered sunlight. Water Air Soil Pollut. 231, 59 (2020).

    Article  CAS  Google Scholar 

  9. P. Gao, X. Hua, V. Degirmenci, D. Rooney, M. Khraisheh, R. Pollard, R. Bouiman, and E.V. Rebrav, Structural and magnetic properties of NiXZn1-XFe2O4 (x = 0, 0.5, 1) nanopowder prepared by sol-gel method. J. Magn. Magn. Mater. 348, 44 (2013).

    Article  CAS  Google Scholar 

  10. B.S. Badireddi, and V. Raghavendra, XRD, TEM, Magnetic studies on NixZn1-xFe2O4 (Where x = 0.2, 0.4, 0.5, 0.6 and 0.8) nano scale particles by chemical co-precipitation method. Int. Let. Chem. Phy. Astron. 60, 20 (2015).

    Article  Google Scholar 

  11. D.H. Chen and X. Hea, Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull. 36, 1369 (2001).

    Article  CAS  Google Scholar 

  12. K. Sue, M. Aoki, T. Sato, D. Nishio-Hamane, S. Kawasaki, Y. Hakuta, Y. Takebayashi, S. Yoda, T. Furuya, T. Sato, and T. Hiaki, Continuous hydrothermal synthesis of nickel ferrite nanoparticles using a central collision-type micromixer: effects of temperature, residence time, metal salt molality, and NaOH addition on conversion, particle size, and crystal phase. Ind. Eng. Chem. Res. 50, 9625 (2011).

    Article  CAS  Google Scholar 

  13. L. Hao, Y. Zhao, Q. Jiao, and P. Chen, Synthesis of zinc–nickel ferrite nanorods and their magnetic properties. RSC Adv. 4, 15650 (2014).

    Article  CAS  Google Scholar 

  14. A. Verma and R. Chatterjee, Effect of zinc substitution on structural, electrical and magnetic properties of mixed Mn-Zn and Ni-Zn ferrites synthesized by citrate precursor techniques. J. Magn. Magn. Mater. 306, 313 (2006).

    Article  CAS  Google Scholar 

  15. S. Kumar, V. Singh, S. Aggrawal, U. Mandal, and R.K. Kotnala, Synthesis of nanocrystalline Ni0.5Zn0.5Fe2O4 ferrite and study of its magnetic behavior at different temperature. Mater. Sci. Eng. (B) 166, 76 (2010).

    Article  CAS  Google Scholar 

  16. Y. Koseoglu, Structural and magnetic properties of Cr doped Ni-Zn ferrite nano particles prepared by surfactant assisted hydrothermal technique. Ceram. Inter. 41, 6417 (2015).

    Article  CAS  Google Scholar 

  17. A.S. Dzunuzovic, N.I. IIice, M.M. Vijatovic Petrovic, J.D. Bobic, B. Stojadinovic, Z. Dohcevic Mitrovic, and B.D. Stojanorvic, Structure and properties of Ni-Zn ferrites obtained by auto combustion method. J. Magn. Magn. Mater. 374, 245 (2015)

  18. V.D. Sudheesh, J. Nehra, A. Vinesh, V. Sebastian, N. Lukshmi, D.P. Dutta, V.R. Reddy, K. Venugopalan, and A. Gupta, Investigations of structural and magnetic properties of Ni0.5Zn0.5Fe2O4 nano powders prepared by self combustion method. Mat. Res. Bull. 48, 698 (2013).

    Article  CAS  Google Scholar 

  19. K. Velmurugan, V.S.K. Venkatachalapathy, and S. Sendhilnathan, Thermogravimetric and magnetic properties of Ni1-XZnXFe2O4 nanoparticles synthesized by coprecipitation. J. Mater. Res. 12, 529 (2009).

    Article  CAS  Google Scholar 

  20. L. Rezlescu, E. Rezlescu, P.D. Popa, and N. Rezlescu, Fine barium hexaferrite powder prepared by crystallization of glass. J. Magn. Magn. Mat. 193, 288–290 (1999).

    Article  CAS  Google Scholar 

  21. J. Massoudi, M. Smari, K. Nouri, E. Dhahri, K. Khirouni, S. Bertaina, L. Bessaisc, and E.K. Hlilf, Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale. RSC Adv. 10, 34556 (2020).

    Article  CAS  Google Scholar 

  22. K.H. Maria, S. Choudhary, and M.A. Hakim, Structural transformation and hysteresis behavior of Cu-Zn ferrites. Int. Nano Lett. 3, 1 (2013).

    Google Scholar 

  23. A.R. Das, V.S. Ananthan, and D.C. Khan, Lattice parameter variation and magnetization studies on titanium-, zirconium-, and tin-substituted nickel-zinc ferrites. J. Appl. Phy. 57, 4189 (1985).

    Article  CAS  Google Scholar 

  24. R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. Lett. 99, 1727 (1955).

    CAS  Google Scholar 

  25. S. Dabagh, K. Chaudhary, Z. Haider, and J. Ali, Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method. Res. Phys. 8, 93 (2018).

    Google Scholar 

  26. T.K. Pathak, J.J.U. Buch, U.N. Trivedi, H.H. Joshi, and K.B. Modi, Infrared spectroscopy and elastic properties of nanocrystalline Mg-Mn ferrites prepared by co-precipitation technique. J. Nanosci. Nanotechnol. 8, 4181 (2008).

    Article  CAS  Google Scholar 

  27. A. Goldman, Understanding ferrites. ACS. Bulletin 63, 582 (1984).

    Google Scholar 

  28. P. Ravindranathan and K.C. Patil, Novel solid solution precursor method for the preparation of ultrafine Ni-Zn ferrites. J. Mat. Sci. 22, 3261 (1987).

    Article  CAS  Google Scholar 

  29. H. Igarash, and K. Okazaki, Effects of porosity and grain size on the magnetic properties of NiZn ferrite. J. Am. Ceram. Soc 60, 54 (1977).

    Article  Google Scholar 

  30. M.P. Reddy, W. Madhuri, N.R. Reddy, K.V. Siva Kumar, V.R.K. Murthy, and R.R. Reddy, Magnetic properties of Ni-Zn ferrites prepared by microwave sintering method. J. Electroceram. 28, 1–9 (2012).

    Article  CAS  Google Scholar 

  31. K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, and G. Shahane, Superparamagnetic manganese ferrite nanoparticle: synthesis and magnetic properties. J. Nanosci. Nanotechnol. 1, 178 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Y. Nadargi or S. S. Suryavanshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 500 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, N.D., Nadargi, D.Y., Kabbur, S.M. et al. Investigation of Structural, Morphological and Elastic Properties of Ni-Zn Ferrite Grown with an Oxalate Precursor. J. Electron. Mater. 51, 2732–2740 (2022). https://doi.org/10.1007/s11664-022-09582-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09582-y

Keywords

Navigation