Skip to main content
Log in

Diamagnetic Al3+ Doped Ni–Zn Spinel Ferrite: Rietveld Refinement, Elastic, Magnetic, Mössbauer, and Electrical Explorations

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Ni0.65Zn0.35AlxFe2−xO4 that has been synthesized using a solution-gelation method and calcined at 600 °C for 4 h was characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A single-phase cubic spinel structure belonging to the Fd-3 m space group was confirmed by Rietveld refinement. The cation distribution that was anticipated using the XRD data deviated from the preferential occupancy, and the results of the magnetization analysis supported this. The two absorption bands in the FTIR spectra corresponding to the tetrahedral and octahedral sites further support the establishment of the ferrite skeleton. Al3+ doping was found to have a considerable impact on the Debye temperature, bulk modulus, and stiffness modulus measured using FTIR data. Interatomic bonding became stronger, increasing elastic moduli. The morphology was examined using SEM, whose results showed a cluster of grains. Additionally, spherical nanoparticles with an average size of 28 nm were visible in the TEM image, which is in good agreement with the crystallite size given by the Williamson-Hall method. The Mössbauer analysis and M–H data showed a soft magnetic behavior with coercivity fluctuation. According to Arrhenius plots, all samples displayed a semiconducting characteristic. With Al3+ doping, dielectric studies revealed a declining trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R.A. Pashameah et al., Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv. Compos. Hybrid Mater. 5, 3146–3157 (2022)

    CAS  Google Scholar 

  2. J. Wang, C. Yang, L. Zhang, C. Cui, X. Zeng, J. Chen, Monodispersed zinc oxide nanoparticles as multifunctional additives for polycarbonate thermoplastic with high transparency and excellent comprehensive performance. Adv. Compos. Hybrid Mater. 5, 2936–2947 (2022)

    CAS  Google Scholar 

  3. M. Yuan, X. Feng, T.-H. Yan, J. Chen, X. Ma, P. Cunha et al., Superparamagnetic iron oxide-enclosed hollow gold nanostructure with tunable surface plasmon resonances to promote near-infrared photothermal conversion. Adv. Compos. Hybrid Mater. 5, 2387–2398 (2022)

    CAS  Google Scholar 

  4. P.G. Undre, P.B. Kharat, R.V. Kathare, K.M. Jadhav, Ferromagnetism in Cu2+ doped ZnO nanoparticles and their physical properties. J. Mater. Sci.: Mater. Electron. 30, 4014–4025 (2019)

    CAS  Google Scholar 

  5. P.G. Undre, S.D. Birajdar, R.V. Kathare, K.M. Jadhav, Enhancement of electrical resistivity in nickel doped ZnO nanoparticles. Proc. Manufact. 20, 477–480 (2018)

    Google Scholar 

  6. Humbe AV, Birajdar SD, Bhandari J, Waghule N, Bhagwat V, Jadhav K. Polyethylene glycol coated CoFe2O4 nanoparticles: a potential spinel ferrite for biomedical applications. AIP Conference Proceedings: AIP Publishing LLC; 2015. p. 050138.

  7. M.V. Shisode, J.S. Kounsalye, A.V. Humbe, R.C. Kambale, K.M. Jadhav, Investigations of magnetic and ferroelectric properties of multiferroic Sr-doped bismuth ferrite. Appl. Phys. A 124, 603 (2018)

    Google Scholar 

  8. M.V. Shisode, A.V. Humbe, P.B. Kharat, K.M. Jadhav, Influence of Ba2+ on opto-electric properties of nanocrystalline BiFeO3 multiferroic. J. Electron. Mater. 48, 358–367 (2019)

    CAS  Google Scholar 

  9. P.B. Kharat, A.R. Chavan, A.V. Humbe, K.M. Jadhav, Evaluation of thermoacoustics parameters of CoFe2O4–ethylene glycol nanofluid using ultrasonic velocity technique. J. Mater. Sci.: Mater. Electron. 30, 1175–1186 (2019)

    CAS  Google Scholar 

  10. P.B. Kharat, A.V. Humbe, J.S. Kounsalye, K.M. Jadhav, Thermophysical investigations of ultrasonically assisted magnetic nanofluids for heat transfer. J. Supercond. Novel Magn. 32, 1307–1317 (2019)

    CAS  Google Scholar 

  11. S.P. More, M.V. Khedkar, S.A. Jadhav, S.B. Somvanshi, A.V. Humbe, K.M. Jadhav, Wet chemical synthesis and investigations of structural and dielectric properties of BaTiO3 nanoparticles. J. Phys: Conf. Ser. 1644, 012007 (2020)

    CAS  Google Scholar 

  12. S.P. More, M.V. Khedkar, D.D. Andhare, A.V. Humbe, K.M. Jadhav, Influence of manganese (Mn) substitution on structural, infrared and dielectric properties of BaTiO3 nanoceramics. J. Mater. Sci.: Mater. Electron. 31, 19756–19763 (2020)

    Google Scholar 

  13. S.A. Hosseini, M. Saghafi Yazdi, Z. Karami, A. Olamaee, M. Abedini, A. Moghanian, Hydrothermally grown mixed ternary nickel ferrite oxides as hybrid battery-type electrodes. J. Mater. Sci.: Mater. Electron. 33, 11725–11742 (2022)

    CAS  Google Scholar 

  14. S. Ghezelbash, M. Yousefi, M. Hossainisadr, S. Baghshahi, Structural and magnetic properties of Sn 4+ doped strontium hexaferrites prepared via sol–gel auto-combustion method. IEEE Trans. Magn. 54, 1–6 (2018)

    Google Scholar 

  15. S. Mirzaee, Y. Azizian-Kalandaragh, P. Rahimzadeh, Modified co-precipitation process effects on the structural and magnetic properties of Mn-doped nickel ferrite nanoparticles. Solid State Sci. 99, 106052 (2020)

    CAS  Google Scholar 

  16. W. Shen, L. Zhang, B. Zhao, Y. Du, X. Zhou, Growth mechanism of octahedral like nickel ferrite crystals prepared by modified hydrothermal method and morphology dependent magnetic performance. Ceram. Int. 44, 9809–9815 (2018)

    CAS  Google Scholar 

  17. L. Yang, T. Lu, H. Xu, N. Wei, Synthesis of YAG powder by the modified sol–gel combustion method. J. Alloy. Compd. 484, 449–451 (2009)

    CAS  Google Scholar 

  18. J. Daniels, A. Rosencwaig, Mössbauer study of the Ni–Zn ferrite system. Can. J. Phys. 48, 381–396 (1970)

    CAS  Google Scholar 

  19. A.V. Humbe, P.B. Kharat, A.C. Nawle, K. Jadhav, Nanocrystalline Ni0 .70− xCuxZn0. 30Fe2O4 with 0≤ x≤ 0.25 prepared by nitrate-citrate route: structure, morphology and electrical investigations. J. Mater. Sci: Mater. Electron. 29, 3467–81 (2018)

    CAS  Google Scholar 

  20. Humbe AV, Kounsalye JS, Shisode MV, Jadhav K. Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0. 70− xCuxZn0. 30Fe2O4 spinel ferrite. Ceramics International 2018;44:5466–72.

  21. S. Madake, J. Thorat, K. Rajpure, Spray deposited multimetal Cu-Ni-Zn ferrite for gas sensing application. Sens. Actuators A 331, 112919 (2021)

    CAS  Google Scholar 

  22. M.N. Akhtar, M. Yousaf, Y. Lu, M.A. Khan, A. Sarosh, M. Arshad et al., Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices. Ceram. Int. 47, 11878–11886 (2021)

    CAS  Google Scholar 

  23. N. Fortas, A. Belkahla, S. Ouyahia, J. Dhahri, E. Hlil, K. Taibi, Effect of Ni substitution on the structural, magnetic and magnetocaloric properties of Zn0.5-xNixMg0.5Fe2O4 (x= 0, 0.125 and 0.250) ferrites. Solid State Sci. 101, 106137 (2020)

    CAS  Google Scholar 

  24. S.A. Jadhav, M.V. Khedkar, D.D. Andhare, S. Gopale, K. Jadhav, Visible light photocatalytic activity of magnetically diluted Ni–Zn spinel ferrite for active degradation of rhodamine B. Ceram. Int. 47, 13980–13993 (2021)

    CAS  Google Scholar 

  25. S. Deshmukh, A.V. Humbe, A. Kumar, R. Dorik, K. Jadhav, Urea assisted synthesis of Ni1−xZnxFe2O4 (0≤ x≤ 0.8): magnetic and Mössbauer investigations. J. Alloys Compd. 704, 227–36 (2017)

    CAS  Google Scholar 

  26. Massoudi J, Messaoudi O, Gharbi S, Mnasri T, Dhahri E, Khirouni K, et al. Magnetocaloric effect, dielectric relaxor behavior, and evidence for direct magnetodielectric behavior in Ni0.6Zn0.4Al0 5Fe1.5O4 ceramics for high-temperature applications. J. Phys. Chem. C 2022.

  27. Q. Ni, L. Sun, E. Cao, W. Hao, Y. Zhang, L. Ju, Structural, magnetic and dielectric properties of (Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrite ceramics prepared by the sol-gel auto-combustion method. Curr. Appl. Phys. 20, 1019–25 (2020)

    Google Scholar 

  28. M. Gray, S. Emori, B. Gray, H. Jeon, van’tErve O, Jonker B, et al., Spin-current generation in low-damping Ni 0.65 Zn 0.35 Al 0.8 Fe 1.2 O 4 spinel ferrite. Phys. Rev. Appl. 9, 064039 (2018)

    CAS  Google Scholar 

  29. P.P.G. Dessai, S.S. Meena, V. Verenkar, Influence of addition of Al3+ on the structural and solid state properties of nanosized Ni–Zn ferrites synthesized using malic acid as a novel fuel. J. Alloys Compd. 842, 155855 (2020)

    Google Scholar 

  30. N. Wu, B. Zhao, X. Chen, C. Hou, M. Huang, A. Alhadhrami et al., Dielectric properties and electromagnetic simulation of molybdenum disulfide and ferric oxide-modified Ti3C2TX MXene hetero-structure for potential microwave absorption. Adv. Compos. Hybrid Mater. 5, 1548–1556 (2022)

    CAS  Google Scholar 

  31. Y. Ma, X. Xie, W. Yang, Z. Yu, X. Sun, Y. Zhang et al., Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv. Compos. Hybrid Mater. 4, 906–924 (2021)

    CAS  Google Scholar 

  32. X. Huang, X. Liu, Z. Jia, B. Wang, X. Wu, G. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 4, 1398–1412 (2021)

    CAS  Google Scholar 

  33. P.G. Undre, P.B. Kharat, J.S. Kounsalye, R.V. Kathare, K.M. Jadhav, Structural, morphological and magnetic properties of Cu2+ doped ZnO nanoparticles. J. Phys. 1644, 012008 (2020)

    CAS  Google Scholar 

  34. Undre PG, Birajdar SD, Kathare RV, Jadhav KM. Structural, morphological and magnetic properties of pure and Ni-doped ZnO nanoparticles synthesized by sol-gel method. AIP Conference Proceedings 2018;1953.

  35. Z. Zhao, Y. Lin, J. Wu, J. Li, M. Lei, Mixed-phase cobalt-based nanosheets prepared by rapid thermal annealing for oxygen evolution catalysis. Adv. Compos. Hybrid Mater. 5, 2589–2600 (2022)

    CAS  Google Scholar 

  36. G.H. Kale, A.V. Humbe, S.D. Birajdar, A.B. Shinde, K.M. Jadhav, l-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures. J. Mater. Sci. 27, 2151–2158 (2016)

    CAS  Google Scholar 

  37. Humbe AV, Somvanshi SB, Kounsalye JS, Kumar A, Jadhav K. Influential trivalent ion (Cr3+) substitution in mixed Ni–Zn nanoferrites: Cation distribution, magnetic, Mossbauer, electric, and dielectric studies. Ceramics International 2022.

  38. M. Ashtar, A. Munir, M. Anis-ur-Rehman, A. Maqsood, Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique. Mater. Res. Bull. 79, 14–21 (2016)

    CAS  Google Scholar 

  39. B. Patil, J.S. Kounsalye, A.V. Humbe, R. Kokate, Structural, magnetic, dielectric and hyperfine interaction studies of titanium (Ti4+)-substituted nickel ferrite (Ni1+ xTixFe2− 2xO4) nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 4556–4567 (2021)

    CAS  Google Scholar 

  40. K.J. Standley, Oxide magnetic materials (Oxford University Press, Oxford, 1972)

    Google Scholar 

  41. T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J. Alloys Compd. 694, 777–791 (2017)

    CAS  Google Scholar 

  42. Buerger MJ. Crystal Structure Analysis: Wiley; 1960.

  43. Cullity BD. Elements of X-ray Diffraction: Addison-Wesley Publishing Company; 1978.

  44. J.S. Kounsalye, A.V. Humbe, A.R. Chavan, K.M. Jadhav, Rietveld, cation distribution and elastic investigations of nanocrystalline Li0.5+0.5xZrxFe2.5–1.5xO4 synthesized via sol-gel route. Phys. B 547, 64–71 (2018)

    CAS  Google Scholar 

  45. V.S. Shinde, V. Vinayak, S.P. Jadhav, N.D. Shinde, A.V. Humbe, K.M. Jadhav, Structure, morphology, cation distribution and magnetic properties of Cr3+-substituted CoFe2O4 nanoparticles. J. Supercond. Novel Magn. 32, 945–955 (2019)

    CAS  Google Scholar 

  46. Q. Han, D. Ji, G. Tang, Z. Li, X. Hou, W. Qi et al., Estimating the cation distributions in the spinel ferrites Cu 0.5–x Ni 0.5 Zn x Fe 2 O 4 (0.0≤ x≤ 0.5). J. Magn. Magn. Mater. 324, 1975–81 (2012)

    CAS  Google Scholar 

  47. A.V. Humbe, J.S. Kounsalye, S.B. Somvanshi, A. Kumar, K. Jadhav, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu 2+) substitution. Mater. Adv. 1, 880–890 (2020)

    CAS  Google Scholar 

  48. D. Kurmude, C. Kale, P. Aghav, D. Shengule, K. Jadhav, Superparamagnetic behavior of zinc-substituted nickel ferrite nanoparticles and its effect on mossbauer and magnetic parameters. J. Supercond. Novel Magn. 27, 1889–1897 (2014)

    CAS  Google Scholar 

  49. P. Prameela, A.M. Kumar, G. Choudary, K. Rao, V. Reddy, Cation distribution in Ni–Cu–Zn nanoferrites from 57 Fe in-field Mössbauer spectra. Mater. Res. Bull. 59, 1–5 (2014)

    CAS  Google Scholar 

  50. B. Evans, S. Hafner, Mössbauer resonance of Fe57 in oxidic spinels containing Cu and Fe. J. Phys. Chem. Solids 29, 1573–1588 (1968)

    CAS  Google Scholar 

  51. R. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727 (1955)

    CAS  Google Scholar 

  52. V. Lakhani, T. Pathak, N. Vasoya, K. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13, 539–547 (2011)

    CAS  Google Scholar 

  53. A.R. Chavan, M.V. Shisode, P.G. Undre, K.M. Jadhav, Influence of Cr3+ substitution on structural, morphological, optical, and magnetic properties of nickel ferrite thin films. Appl. Phys. A 125, 472 (2019)

    CAS  Google Scholar 

  54. C.S. Ega, B.R. Babu, K.V. Ramesh, M. Sreenivasulu, Y. Purushotham, Correlation between structural, magnetic and dielectric properties of microwave sintered Ni-Zn-Al nanoferrites. J. Supercond. Novel Magn. 32, 3525–3534 (2019)

    CAS  Google Scholar 

  55. V. Bharati, S.B. Somvanshi, A.V. Humbe, V. Murumkar, V. Sondur, K. Jadhav, Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J. Alloys Compd. 821, 153501 (2020)

    CAS  Google Scholar 

  56. J. Lin, J. Zhang, H. Sun, Q. Lin, Z. Guo, H. Yang et al., Structural and magnetic property of Cr3+ substituted cobalt ferrite nanomaterials prepared by the sol-gel method. Materials 11, 2095 (2018)

    PubMed  PubMed Central  Google Scholar 

  57. Kalunge S, Humbe AV, Khedkar MV, More S, Keche A, Pandit A. Investigation on synthesis, structural and electrical properties of zinc ferrite on gamma irradiation. J. Phys. 2020. p. 012017.

  58. Kounsalye JS, Humbe AV, Khirade PP, Chavan AR, Jadhav K. Rietveld refinement and electrical properties of LiTiFeO4. AIP Conference Proceedings: AIP Publishing LLC; 2017. p. 050123.

  59. E.C. Sekhar, M. Sreenivasulu, Y. Purushotham, G. Magesh, Study of some physicochemical properties of microwave-sintered Al3+-doped Ni-Zn ferrites for gas sensor applications. J. Supercond. Novel Magn. 34, 2079–2091 (2021)

    CAS  Google Scholar 

  60. L. Wang, B. Rai, S. Mishra, Structural and magnetic study of Al3+ doped Ni0.75Zn0.25Fe2− xAlxO4 nanoferrites. Mater. Res. Bull. 65, 183–94 (2015)

    CAS  Google Scholar 

  61. A.V. Humbe, A.C. Nawle, A.B. Shinde, K.M. Jadhav, Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route. J. Alloy. Compd. 691, 343–354 (2017)

    CAS  Google Scholar 

  62. A.V. Raut, P.P. Khirade, A. Humbe, S.A. Jadhav, D.R. Shengule, Structural, electrical, dielectric and magnetic properties of Al3+ substituted Ni-Zn ferrite. J. Supercond. Novel Magn. 29, 1331–1337 (2016)

    CAS  Google Scholar 

  63. J.C. Maxwell, A treatise on electricity and magnetism (Clarendon Press, Oxford, 1873)

    Google Scholar 

  64. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (AVH) is grateful to Dr. Mukul Gupta UGC DAE CSR, Indore for providing X-ray diffraction and SAIF, IIT Powai, Mumbai for transmission electron microscopy facilities.

Author information

Authors and Affiliations

Authors

Contributions

PGU: Methodology, Sample preparation and characterizations, formal analysis, writing—original draft, AVH: Data analysis and calculations, writing—original draft, JSK: Cation distribution, Elastic property determination, AK: Mössbauer data curation and analysis, RVK: Conceptualization, Supervision, KMJ—Conceptualization, Validation.

Corresponding author

Correspondence to Ashok V. Humbe.

Ethics declarations

Conflict of interest

The authors state that they are aware of no personal or professional conflicts that might have appeared to have impacted the findings provided in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Undre, P.G., Humbe, A.V., Kounsalye, J.S. et al. Diamagnetic Al3+ Doped Ni–Zn Spinel Ferrite: Rietveld Refinement, Elastic, Magnetic, Mössbauer, and Electrical Explorations. J Inorg Organomet Polym 33, 3372–3388 (2023). https://doi.org/10.1007/s10904-023-02755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02755-0

Keywords

Navigation