Skip to main content
Log in

One-Step Synthesis of High-Purity and High-Aspect-Ratio Silver Nanowires by a Solvothermal Process with Mixed Polymer Capping Agents

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Silver nanowires (AgNWs) with a high aspect ratio (>2000) have remarkable flexibility and photoelectric properties. Moreover, these nanowires are an important alternative for flexible transparent electrodes because of their significant electrical conductivity and low cost when fabricated into conductive networks on transparent substrates. Most reported AgNWs have low aspect ratios and are accompanied by numerous nanoparticles, which require an additional purification treatment. A one-step synthesis is still challenging for high-purity AgNWs with ultra-high aspect ratios (>2000), thin diameters, and few particle by-products. In this work, we propose a strategy to effectively improve the aspect ratio of AgNWs. We used a polyvinylpyrrolidone (PVP) mixture as the capping agent and explored the effects of mixing PVPs with two different molecular weights: 1,300,000 Da and 40,000 Da. The fabricated AgNWs are highly pure (AgNPs×100 < 0.29 pieces/square micron) with diameters of about 40 nm, an aspect ratio of more than 2000, and a quality factor of 7407.41. Thus, our strategy paves the way for low-cost and large-scale manufacturing of high-purity flexible transparent electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.W. An, S. Heo, S. Ji, F. Bien, and J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018).

    Article  CAS  Google Scholar 

  2. B. Bari, J. Lee, T. Jang, P. Won, S.H. Ko, K. Alamgir, M. Arshad, and L. Guo, Simple hydrothermal synthesis of very long and thin silver nanowires and their application in high quality transparent electrodes. J. Mater. Chem. 4, 11365 (2016).

    Article  CAS  Google Scholar 

  3. M. Vosgueritchian, D.J. Lipomi, and Z. Bao, Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421 (2012).

    Article  CAS  Google Scholar 

  4. S. Lin, Z. Wang, Y. Zhang, Y. Huang, R. Yuan, W. Xiang, and Y. Zhou, Easy synthesis of silver nanoparticles-orange emissive carbon dots hybrids exhibiting enhanced fluorescence for white light emitting diodes. J. Alloys Compd. 700, 75 (2017).

    Article  CAS  Google Scholar 

  5. Y. Shengrong, A.R. Rathmell, C. Zuofeng, I.E. Stewart, and B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors. Adv. Mater. 26, 6670 (2015).

    Google Scholar 

  6. Y. Zhang, Z. Sun, S. Cheng, and F. Yan, Plasmon-induced broadband light-harvesting for dye-sensitized solar cells using a mixture of gold nanocrystals. Chemsuschem 9, 813 (2016).

    Article  CAS  Google Scholar 

  7. P. Jang-Ung, N. Sungwoo, L. Mi-Sun, and C.M. Lieber, Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater. 11, 120 (2011).

    Google Scholar 

  8. Y. Zhang, J. Guo, D. Xu, Y. Sun, and F. Yan, One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 9, 25465 (2017).

    Article  CAS  Google Scholar 

  9. C. Mayousse, C. Celle, A. Carella, and J. Pierre, Simonato, Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res. 7, 315 (2014).

  10. B.S. Shim, J. Zhu, E. Jan, K. Critchley, and N.A. Kotov, Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit. ACS Nano 4, 3725 (2010).

    Article  CAS  Google Scholar 

  11. Z. Teymouri, L. Naji, and Z. Fakharan, The influences of polyol process parameters on the optoelectronic characteristics of AgNWs-based flexible electrodes and their application in ITO-free polymer solar cells. Org. Electron. 62, 621 (2018).

    Article  CAS  Google Scholar 

  12. M. Manceau, D. Angmo, and M. Jørgensen, ITO-free flexible polymer solar cells: from small model devices to roll-to-roll processed large modules. Organic Electron. 12, 566 (2011).

    Article  CAS  Google Scholar 

  13. S.W. Hsu and A.R. Tao, Halide-directed synthesis of square prismatic Ag nanocrystals by the polyol method. Chem. Mater. 30, 4617 (2018).

    Article  CAS  Google Scholar 

  14. R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, and K.I. Winey, Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS Nano 7, 7654 (2013).

    Article  CAS  Google Scholar 

  15. S.M. Bergin, C. Yu-Hui, A.R. Rathmell, C. Patrick, L. Zhi-Yuan, and B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996 (2012).

    Article  CAS  Google Scholar 

  16. Z. Wang, J. Liu, X. Chen, J. Wan, and Y. Qian, A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem.–Eur. J. 11, 160 (2005).

    Article  CAS  Google Scholar 

  17. X. M. Sun and Li. Y. D, Cylindrical silver nanowires: preparation, structure, and optical properties. Adv. Mater, 17, 2626 (2005).

  18. Y.W. Cao, R. Jin, and C.A. Mirkin, DNA-modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961 (2001).

    Article  CAS  Google Scholar 

  19. J. Low, S. Qiu, D. Xu, C. Jiang, and B. Cheng, Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci. 423 (2018).

  20. S. Wang, Y. Tian, D. Su, and Y. Huang, Rapid synthesis of long silver nanowires by controlling concentration of Cu 2+ ions. Mater. Lett. 172, 175 (2016).

    Article  CAS  Google Scholar 

  21. D.S. Hecht, H. Liangbing, and I. Glen, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 1482 (2011).

    Article  CAS  Google Scholar 

  22. Z. Pei, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, and Y. Wei, Silver nanowires: synthesis technologies, growth mechanism and multifunctional applications. Mater. Sci. Eng. B, 223, 1 (2017).

  23. Y. Fang, Z. Wu, L. Jia, F. Jiang, and B. Hu, High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 28, 1705409 (2018).

    Article  CAS  Google Scholar 

  24. Z. Ye, J. Guo, X. Dan, S. Yi, Y. Feng, Z. Ye, J. Guo, X. Dan, S. Yi, and Y. Feng, One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 9, 25465 (2017).

    Article  CAS  Google Scholar 

  25. R. Yunxia, H. Weiwei, W. Ke, J. Shulin, and Y. Changhui, A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem. Commun. 50, 14877 (2014).

    Article  CAS  Google Scholar 

  26. R.R. Silva, M. Yang, S.I. Choi, M. Chi, M. Luo, C. Zhang, Z.Y. Li, P.H. Camargo, S.J. Ribeiro, and Y. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 10, 7892 (2016).

    Article  CAS  Google Scholar 

  27. B. Li, S. Ye, I.E. Stewart, S. Alvarez, and B.J. Wiley, Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 15, 6722 (2015).

    Article  CAS  Google Scholar 

  28. Z. Gang and D. Chen, Solvothermal fabrication of uniform silver nanowires. J. Mater. Sci.: Mater. Electron. 23, 2035 (2012).

  29. E.-J. Lee, M.-H. Chang, Y.-S. Kim, and J.-Y. Kim, High-pressure polyol synthesis of ultrathin silver nanowires: electrical and optical properties high-pressure polyol synthesis of ultrathin silver nanowires: electrical and optical properties. APL Mater. 1, 273 (2013).

    Article  CAS  Google Scholar 

  30. Y. Borodko, S.M. Humphrey, T.D. Tilley, H. Frei, and G.A. Somorjai, Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J. Phys. Chem. C 111, 6288 (2007).

    Article  CAS  Google Scholar 

  31. J.J. Zhu, C.X. Kan, J.G. Wan, M. Han, and G.H. Wang, High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater 2011, 982547 (2011).

    Article  CAS  Google Scholar 

  32. X. U. Li-Hong, C. X. Kan, C. S. Wang, B. Cong, N. I. Yuan, and D. N. Shi, Synthesis of Ag nanostructures with controlled shapes by a polyvinylpyrrolidone-assisted hydrothermal method. Acta Phys.-Chim. Sin. 30, 569 (2014).

  33. X.X. Hu, Z. Jie, O.L. Kyle, L.Q. Ge, and X.Y. Nan, Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed-mediated growth of Ag nanocrystals. J. Am. Chem. Soc. 134, 1793 (2012).

    Article  CAS  Google Scholar 

  34. G. Sang, Y. Cao, M. Fan, G. Lu, Y. Zhu, Q. Zhao, and X. Cui, Development of a novel sulphoalumitate cement-based composite combing fine steel fibers and phase change materials for thermal energy storage. Energy Build. 183, 75 (2019).

    Article  Google Scholar 

  35. H. Yang, T.R. Chen, H.F. Wang, S.C. Bai, and X.Z. Guo, One-pot rapid synthesis of high aspect ratio silver nanowires for transparent conductive electrodes. Mater. Res. Bull. 102, 79 (2018).

    Article  CAS  Google Scholar 

  36. X.W. Meng, Y.Y. Mao, Y.W. Yang, H.W. Yang, C.Y. Hu, J.M. Guo, and Y.Q. Li, Synthesis of ultra-long silver nanowires by SNS-directed method and their characterization. Precious Metals. 38, 20 (2017).

    Google Scholar 

  37. H. Wang, B.K. Li, C. Xu, S.C. Xu, and G.H. Li, Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity. J. Alloys Compd. 772, 150 (2019).

    Article  CAS  Google Scholar 

  38. Y. Sun, B. Gates, B. Mayers, and Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165 (2002).

    Article  CAS  Google Scholar 

  39. Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).

    Article  CAS  Google Scholar 

  40. D. Chen, X. Qiao, X. Qiu, J. Chen, and R. Jiang, Large-scale synthesis of silver nanowires via a solvothermal method. J. Mater. Sci.: Mater. Electron., 22, 6 (2011).

  41. K. Zhan, R. Su, S. Bai, Z. Yu, N. Cheng, C. Wang, S. Xu, W. Liu, S. Guo, and Z.X. Zhao, One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe(3+) & Cl(-) co-mediated polyol method and their application as transparent conductive films. Nanoscale 8, 18121 (2016).

    Article  CAS  Google Scholar 

  42. Y. Zheng, J. Zeng, A. Ruditskiy, M. Liu, and Y. Xia, Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22 (2013).

    Article  CAS  Google Scholar 

  43. B. Wiley, T. Herricks, Y. Sun, and Y. Xia, Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal. Truncated Cubes Tetrahedrons. Nano Lett. 4, 1733 (2004).

    CAS  Google Scholar 

  44. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, and Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736 (2002).

    Article  CAS  Google Scholar 

  45. Z. Shu-Hong, J. Zhi-Yuan, X. Zhao-Xiong, X. Xin, H. Rong-Bin, and Z. Lan-Sun, Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 109, 9416 (2005).

    Article  CAS  Google Scholar 

  46. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, and G.Q. Xu, Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12, 909 (1996).

    Article  CAS  Google Scholar 

  47. E.C. Dong, Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 4, 21060 (2014).

    Article  CAS  Google Scholar 

  48. K. Chien Lin, and H. Kuo Chu, Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism. Langmuir 28, 3722 (2012).

    Article  CAS  Google Scholar 

  49. M. Hu, J. Gao, Y. Dong, S. Yang, and R.K.Y. Li, Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires. RSC Adv. 2, 2055 (2012).

    Article  CAS  Google Scholar 

  50. K. Zhang, Y. Du, and S. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Org. Electron. 26, 380 (2015).

    Article  CAS  Google Scholar 

  51. Y. Hui, T. Chen, H. Wang, S. Bai, and X. Guo, One-pot rapid synthesis of high aspect ratio silver nanowires for transparent conductive electrodes. Mater. Res. Bull. 102, 79 (2018).

    Article  CAS  Google Scholar 

  52. H. Ding, Y. Zhang, G. Yang, S. Zhang, L. Yu, and P. Zhang, Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films. RSC Adv. 6, 8096 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2017ZDJC-18), National Natural Science Foundation of China (Grant nos. 51308447, 51578448), and the Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of the People's Republic of China (Shan Ren She Han [2016]789).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L., Wei, J., Wang, J. et al. One-Step Synthesis of High-Purity and High-Aspect-Ratio Silver Nanowires by a Solvothermal Process with Mixed Polymer Capping Agents. J. Electron. Mater. 51, 3216–3225 (2022). https://doi.org/10.1007/s11664-022-09564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09564-0

Keywords

Navigation