Skip to main content
Log in

Large-scale synthesis of AgNWs with ultra-high aspect ratio above 4000 and their application in conductive thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Large-scale, uniform silver nanowires (AgNWs) with diameter of 30 nm and ultra-high aspect ratio up to 4000 were obtained by adding Cu2+ and Fe3+ to the AgNWs synthesis. AgNWs were longer at higher concentration of Cu2+ and better uniformity in the presence of both Fe3+ and Cu2+. Finding indicate that by simply controlling Cu2+/Fe3+ molar ratios in the reaction process, the high yield (98%), ultra-high aspect ratio (over 4000) and large-scale (over 50 g per pot) production of AgNWs can be obtained. Additionally, embedding the ultra-high aspect ratio AgNWs into polyvinyl alcohol (PVA) matrices, novel AgNWs@PVA flexible transparent conductor films (TCFs) with high-electrical conductivity performance was fabricated. This method improved the production efficiency of ultra-high aspect ratio AgNWs and could be applied to high performance TCFs; thus having major commercial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Nano. Lett. 15, 6722–6726 (2015)

    Article  Google Scholar 

  2. K.-S. Kim, B.-G. Park, K.-H. Jung, S.-B. Jung, J.-W. Kim, J. Mater. Sci. 26, 8644–8651 (2015)

    Google Scholar 

  3. L.J. Andrés, M.F. Menéndez, D. Gómez, A.L. Martínez, N. Bristow, J.P. Kettle et al., Nanotechnology 26, 265201 (2015)

    Article  Google Scholar 

  4. Y. Mao, C. Wang, H. Yang, Mater. Lett. 150, 101–104 (2015)

    Article  Google Scholar 

  5. X. Peng, F. Tan, W. Wang, X. Qiu, F. Sun, X. Qiao et al., J. Mater. Sci. 25, 1149–1155 (2014)

    Google Scholar 

  6. S. Ye, A.R. Rathmell, Z. Chen, I.E. Stewart, B.J. Wiley, Adv. Mater. 26, 6670–6687 (2014)

    Article  Google Scholar 

  7. M. Zubair, N. Duraisamy, K. Choi, M. Hyun, J. Mater. Sci. 25, 1033–1039 (2014)

    Google Scholar 

  8. S. Sorel, P.E. Lyons, S. De, J.C. Dickerson, J.N. Coleman, Nanotechnology 23, 185201–185209 (2012)

    Article  Google Scholar 

  9. J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo et al., Adv. Funct. Mater. 23, 4171–4176 (2013)

    Article  Google Scholar 

  10. R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey, ACS Nano 7, 7654–7663 (2013)

    Article  Google Scholar 

  11. S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, Nanoscale 4, 1996–2004 (2012)

    Article  Google Scholar 

  12. Y.H. Wang, N.N. Xiong, Z.L. Li, H. Xie, J.Z. Liu, J. Dong et al., J. Mater. Sci. 26, 7927–7935 (2015)

    Google Scholar 

  13. Z.L. Li, H. Xie, D. Jun, Y.H. Wang, X.Y. Wang, J.Z. Li, J. Mater. Sci. 26, 6532–6538 (2015)

    Google Scholar 

  14. Y. Tang, W. He, S. Wang, Z. Tao, L. Cheng, J. Mater. Sci. 25, 2929–2933 (2014)

    Google Scholar 

  15. Y. Mao, C. Wang, H. Yang, Mater. Lett. 142, 102–105 (2015)

    Article  Google Scholar 

  16. J. Jiu, T. Araki, J. Wang, M. Nogi, T. Sugahara, S. Nagao et al., J. Mater. Chem. A 2, 6326–6330 (2014)

    Article  Google Scholar 

  17. Y. Song, M. Wang, X. Zhang, J. Wu, T. Zhang, Nanoscale Res. Lett. 9, 1–8 (2014)

    Article  Google Scholar 

  18. S. Liu, B. Sun, J.-G. Li, J. Chen, CrystEngComm 16, 244–251 (2014)

    Article  Google Scholar 

  19. C. Jia, P. Yang, A. Zhang, Mater. Chem. Phys. 143, 794–800 (2014)

    Article  Google Scholar 

  20. A. Amirjani, P. Marashi, D.H. Fatmehsari, Coll. Surf. A 444, 33–39 (2014)

    Article  Google Scholar 

  21. S. Wang, Y. Tian, S. Ding, Y. Huang, Mater. Lett. 172, 175–178 (2016)

    Article  Google Scholar 

  22. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  23. A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem. Int. Ed. 45, 4597–4601 (2006)

    Article  Google Scholar 

  24. K.C. Pradel, K. Sohn, J. Huang, Angew. Chem. Int. Ed. 50, 3412–3416 (2011)

    Article  Google Scholar 

  25. B. Wiley, Y. Sun, Y. Xia, Langmuir 21, 8077–8080 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61540074), the Basic Applied Research Foundation of Yunnan Province, China (Grant No. 2016FD126) and the fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (No. SKL-SPM-201521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyun Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Yang, H., Hu, C. et al. Large-scale synthesis of AgNWs with ultra-high aspect ratio above 4000 and their application in conductive thin film. J Mater Sci: Mater Electron 28, 5308–5314 (2017). https://doi.org/10.1007/s10854-016-6188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6188-4

Keywords

Navigation